Loading…

Improved version of teaching learning-based optimization algorithm using random local search

Purpose This paper aims to deal with the development of a newly improved version of teaching learning based optimization (TLBO) algorithm. Design/methodology/approach Random local search part was added to the classic optimization process with TLBO. The new version is called TLBO algorithm with rando...

Full description

Saved in:
Bibliographic Details
Published in:Compel 2019-06, Vol.38 (3), p.1048-1060
Main Authors: Kheireddine, Bourahla, Zoubida, Belli, Tarik, Hacib
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c933-f4ca003b72a98292b0af57e635cd3dddb0ddf78287313aa05c526b3101ca0f363
cites
container_end_page 1060
container_issue 3
container_start_page 1048
container_title Compel
container_volume 38
creator Kheireddine, Bourahla
Zoubida, Belli
Tarik, Hacib
description Purpose This paper aims to deal with the development of a newly improved version of teaching learning based optimization (TLBO) algorithm. Design/methodology/approach Random local search part was added to the classic optimization process with TLBO. The new version is called TLBO algorithm with random local search (TLBO-RLS). Findings At first step and to validate the effectiveness of the new proposed version of the TLBO algorithm, it was applied to a set of two standard benchmark problems. After, it was used jointly with two-dimensional non-linear finite element method to solve the TEAM workshop problem 25, where the results were compared with those resulting from classical TLBO, bat algorithm, hybrid TLBO, Nelder–Mead simplex method and other referenced work. Originality value New TLBO-RLS proposed algorithm contains a part of random local search, which allows good exploitation of the solution space. Therefore, TLBO-RLS provides better solution quality than classic TLBO.
doi_str_mv 10.1108/COMPEL-09-2018-0373
format article
fullrecord <record><control><sourceid>emerald</sourceid><recordid>TN_cdi_emerald_primary_10_1108_COMPEL-09-2018-0373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1108/COMPEL-09-2018-0373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c933-f4ca003b72a98292b0af57e635cd3dddb0ddf78287313aa05c526b3101ca0f363</originalsourceid><addsrcrecordid>eNptkM1OwzAQhC0EEqXwBFz8Aoa1N87PEVUFKhWVQ49I0cZ2mqAkruxQCZ6eROXIXGYO38xhGLuX8CAl5I-r3dv7eiugEApkLgAzvGALBToROoX0ki0AUQmZJsU1u4nxEyYVGhbsY9Mfgz85y08uxNYP3Nd8dGSadjjwzlEYpiAqihPij2Pbtz80zhx1Bx_asen5V5zZQIP1Pe-8oY7HqWiaW3ZVUxfd3Z8v2f55vV-9iu3uZbN62gpTIIo6MQSAVaaoyFWhKqBaZy5FbSxaayuwts5ylWcokQi00SqtUIKcejWmuGTqPOt6F6iz5TG0PYXvUkI531P-cw_-Ars9Wg8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved version of teaching learning-based optimization algorithm using random local search</title><source>ABI/INFORM Global</source><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Kheireddine, Bourahla ; Zoubida, Belli ; Tarik, Hacib</creator><creatorcontrib>Kheireddine, Bourahla ; Zoubida, Belli ; Tarik, Hacib</creatorcontrib><description>Purpose This paper aims to deal with the development of a newly improved version of teaching learning based optimization (TLBO) algorithm. Design/methodology/approach Random local search part was added to the classic optimization process with TLBO. The new version is called TLBO algorithm with random local search (TLBO-RLS). Findings At first step and to validate the effectiveness of the new proposed version of the TLBO algorithm, it was applied to a set of two standard benchmark problems. After, it was used jointly with two-dimensional non-linear finite element method to solve the TEAM workshop problem 25, where the results were compared with those resulting from classical TLBO, bat algorithm, hybrid TLBO, Nelder–Mead simplex method and other referenced work. Originality value New TLBO-RLS proposed algorithm contains a part of random local search, which allows good exploitation of the solution space. Therefore, TLBO-RLS provides better solution quality than classic TLBO.</description><identifier>ISSN: 0332-1649</identifier><identifier>EISSN: 2054-5606</identifier><identifier>DOI: 10.1108/COMPEL-09-2018-0373</identifier><language>eng</language><publisher>Emerald Publishing Limited</publisher><ispartof>Compel, 2019-06, Vol.38 (3), p.1048-1060</ispartof><rights>Emerald Publishing Limited</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c933-f4ca003b72a98292b0af57e635cd3dddb0ddf78287313aa05c526b3101ca0f363</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kheireddine, Bourahla</creatorcontrib><creatorcontrib>Zoubida, Belli</creatorcontrib><creatorcontrib>Tarik, Hacib</creatorcontrib><title>Improved version of teaching learning-based optimization algorithm using random local search</title><title>Compel</title><description>Purpose This paper aims to deal with the development of a newly improved version of teaching learning based optimization (TLBO) algorithm. Design/methodology/approach Random local search part was added to the classic optimization process with TLBO. The new version is called TLBO algorithm with random local search (TLBO-RLS). Findings At first step and to validate the effectiveness of the new proposed version of the TLBO algorithm, it was applied to a set of two standard benchmark problems. After, it was used jointly with two-dimensional non-linear finite element method to solve the TEAM workshop problem 25, where the results were compared with those resulting from classical TLBO, bat algorithm, hybrid TLBO, Nelder–Mead simplex method and other referenced work. Originality value New TLBO-RLS proposed algorithm contains a part of random local search, which allows good exploitation of the solution space. Therefore, TLBO-RLS provides better solution quality than classic TLBO.</description><issn>0332-1649</issn><issn>2054-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptkM1OwzAQhC0EEqXwBFz8Aoa1N87PEVUFKhWVQ49I0cZ2mqAkruxQCZ6eROXIXGYO38xhGLuX8CAl5I-r3dv7eiugEApkLgAzvGALBToROoX0ki0AUQmZJsU1u4nxEyYVGhbsY9Mfgz85y08uxNYP3Nd8dGSadjjwzlEYpiAqihPij2Pbtz80zhx1Bx_asen5V5zZQIP1Pe-8oY7HqWiaW3ZVUxfd3Z8v2f55vV-9iu3uZbN62gpTIIo6MQSAVaaoyFWhKqBaZy5FbSxaayuwts5ylWcokQi00SqtUIKcejWmuGTqPOt6F6iz5TG0PYXvUkI531P-cw_-Ars9Wg8</recordid><startdate>20190603</startdate><enddate>20190603</enddate><creator>Kheireddine, Bourahla</creator><creator>Zoubida, Belli</creator><creator>Tarik, Hacib</creator><general>Emerald Publishing Limited</general><scope/></search><sort><creationdate>20190603</creationdate><title>Improved version of teaching learning-based optimization algorithm using random local search</title><author>Kheireddine, Bourahla ; Zoubida, Belli ; Tarik, Hacib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c933-f4ca003b72a98292b0af57e635cd3dddb0ddf78287313aa05c526b3101ca0f363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kheireddine, Bourahla</creatorcontrib><creatorcontrib>Zoubida, Belli</creatorcontrib><creatorcontrib>Tarik, Hacib</creatorcontrib><jtitle>Compel</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kheireddine, Bourahla</au><au>Zoubida, Belli</au><au>Tarik, Hacib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved version of teaching learning-based optimization algorithm using random local search</atitle><jtitle>Compel</jtitle><date>2019-06-03</date><risdate>2019</risdate><volume>38</volume><issue>3</issue><spage>1048</spage><epage>1060</epage><pages>1048-1060</pages><issn>0332-1649</issn><eissn>2054-5606</eissn><abstract>Purpose This paper aims to deal with the development of a newly improved version of teaching learning based optimization (TLBO) algorithm. Design/methodology/approach Random local search part was added to the classic optimization process with TLBO. The new version is called TLBO algorithm with random local search (TLBO-RLS). Findings At first step and to validate the effectiveness of the new proposed version of the TLBO algorithm, it was applied to a set of two standard benchmark problems. After, it was used jointly with two-dimensional non-linear finite element method to solve the TEAM workshop problem 25, where the results were compared with those resulting from classical TLBO, bat algorithm, hybrid TLBO, Nelder–Mead simplex method and other referenced work. Originality value New TLBO-RLS proposed algorithm contains a part of random local search, which allows good exploitation of the solution space. Therefore, TLBO-RLS provides better solution quality than classic TLBO.</abstract><pub>Emerald Publishing Limited</pub><doi>10.1108/COMPEL-09-2018-0373</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0332-1649
ispartof Compel, 2019-06, Vol.38 (3), p.1048-1060
issn 0332-1649
2054-5606
language eng
recordid cdi_emerald_primary_10_1108_COMPEL-09-2018-0373
source ABI/INFORM Global; Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)
title Improved version of teaching learning-based optimization algorithm using random local search
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emerald&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20version%20of%20teaching%20learning-based%20optimization%20algorithm%20using%20random%20local%20search&rft.jtitle=Compel&rft.au=Kheireddine,%20Bourahla&rft.date=2019-06-03&rft.volume=38&rft.issue=3&rft.spage=1048&rft.epage=1060&rft.pages=1048-1060&rft.issn=0332-1649&rft.eissn=2054-5606&rft_id=info:doi/10.1108/COMPEL-09-2018-0373&rft_dat=%3Cemerald%3E10.1108/COMPEL-09-2018-0373%3C/emerald%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c933-f4ca003b72a98292b0af57e635cd3dddb0ddf78287313aa05c526b3101ca0f363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true