Loading…
Optimization of the rotor geometry of the line-start permanent magnet synchronous motor by the use of particle swarm optimization
Purpose – The purpose of this paper is to elaborate the methodology and software for the optimization of rotor structure of the line-start permanent magnet synchronous motor (LSPMSM). To prove usefulness of presented approach the case study problem has been solved. Design/methodology/approach – The...
Saved in:
Published in: | Compel 2015-01, Vol.34 (3), p.882-892 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
– The purpose of this paper is to elaborate the methodology and software for the optimization of rotor structure of the line-start permanent magnet synchronous motor (LSPMSM). To prove usefulness of presented approach the case study problem has been solved.
Design/methodology/approach
– The modified particle swarm optimization (PSO) algorithm has been employed for the optimization of LSPMSM. The optimization solver has been elaborated in Delphi environment. The software consists of two modules: an optimization solver and a numerical model of LSPMSM. The model of the considered machine has been developed in the ANSYS Maxwell environment. In the optimization procedure the objective function has been based on maximizing efficiency and power factor.
Findings
– Obtained results show that modified PSO algorithm can be successfully applied for the optimization of the rotor structure of LSPMSM. This software can be used as a design tool to improve the performance of LSPMSM. The results of studied case problem illustrate that it is possible to optimize rotor of LSPMSM to achieve good self-starting properties with simultaneous minimization of usage of permanent magnet material.
Research limitations/implications
– Both, the simpler lumped parameters model and more advanced field model of the motor were tested. Presented comparison to the results of the finite element analysis (FEA) shows that for considered in the paper the case study problem the accuracy of circuit model is acceptable.
Practical implications
– Presented approach and developed software can be used as an effective design tool to improve the performance of LSPMSM.
Originality/value
– The paper offers appropriate approach for optimizing the permanent magnet synchronous motors having ability to start by direct connection to the grid. |
---|---|
ISSN: | 0332-1649 2054-5606 |
DOI: | 10.1108/COMPEL-10-2014-0276 |