Loading…
Using genetic algorithms to improve support vector regression in the analysis of atomic spectra of lubricant oils
Purpose – The purpose of this paper is to assess the quality of commercial lubricant oils. A spectroscopic method was used in combination with multivariate regression techniques (ordinary multivariate multiple regression, principal components analysis, partial least squares, and support vector regre...
Saved in:
Published in: | Engineering computations 2016-06, Vol.33 (4), p.995-1005 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-ace0f33d407ffb12c12ccb7a8eec04fdb0850547c3103962a9dee3abc59a3a9e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-ace0f33d407ffb12c12ccb7a8eec04fdb0850547c3103962a9dee3abc59a3a9e3 |
container_end_page | 1005 |
container_issue | 4 |
container_start_page | 995 |
container_title | Engineering computations |
container_volume | 33 |
creator | Fernandez-Lozano, Carlos Cedrón, Francisco Rivero, Daniel Dorado, Julian Andrade-Garda, José Manuel Pazos, Alejandro Gestal, Marcos |
description | Purpose
– The purpose of this paper is to assess the quality of commercial lubricant oils. A spectroscopic method was used in combination with multivariate regression techniques (ordinary multivariate multiple regression, principal components analysis, partial least squares, and support vector regression (SVR)).
Design/methodology/approach
– The rationale behind the use of SVR was the fuzzy characteristics of the signal and its inherent ability to find nonlinear, global solutions in highly complex dimensional input spaces. Thus, SVR allows extracting useful information from calibration samples that makes it possible to characterize physical-chemical properties of the lubricant oils.
Findings
– A dataset of 42 spectra measured from oil standards was studied to assess the concentration of copper into the oils and, thus, evaluate the wearing of the machinery. It was found that the use of SVR was very advantageous to get a regression model.
Originality/value
– The use of genetic algorithms coupled to SVR was considered in order to reduce the time needed to find the optimal parameters required to get a suitable prediction model. |
doi_str_mv | 10.1108/EC-03-2015-0062 |
format | article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_EC-03-2015-0062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816055883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-ace0f33d407ffb12c12ccb7a8eec04fdb0850547c3103962a9dee3abc59a3a9e3</originalsourceid><addsrcrecordid>eNptkU1LxDAQhoMouK6evQa8eKlOmnSbHmVZP0DwoueQZqe7WdqmZtIF_71d1osiDAwMz_vC8DB2LeBOCND3q2UGMstBFBnAIj9hM1EWOiuhLE_ZDPKFypQCcc4uiHYAUEoJM_b5Qb7f8A32mLzjtt2E6NO2I54C990Qwx45jcMQYuJ7dClEHnETkciHnvuepy1y29v2izzx0HCbQjc10TDB0R4u7VhH72yfePAtXbKzxraEVz97zj4eV-_L5-z17ell-fCaOanzlFmH0Ei5VlA2TS1yN42rS6sRHahmXYMuoFClkwJktchttUaUtnZFZaWtUM7Z7bF3-uFzREqm8-SwbW2PYSQjtFhAUWgtJ_TmD7oLY5x-IpODVkoIpaqJuj9SLgaiiI0Zou9s_DICzEGBWS0NSHNQYA4KpsTdMYEdRtuu_wn8cia_AVqeiOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084411449</pqid></control><display><type>article</type><title>Using genetic algorithms to improve support vector regression in the analysis of atomic spectra of lubricant oils</title><source>ABI/INFORM Global</source><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Fernandez-Lozano, Carlos ; Cedrón, Francisco ; Rivero, Daniel ; Dorado, Julian ; Andrade-Garda, José Manuel ; Pazos, Alejandro ; Gestal, Marcos</creator><creatorcontrib>Fernandez-Lozano, Carlos ; Cedrón, Francisco ; Rivero, Daniel ; Dorado, Julian ; Andrade-Garda, José Manuel ; Pazos, Alejandro ; Gestal, Marcos</creatorcontrib><description>Purpose
– The purpose of this paper is to assess the quality of commercial lubricant oils. A spectroscopic method was used in combination with multivariate regression techniques (ordinary multivariate multiple regression, principal components analysis, partial least squares, and support vector regression (SVR)).
Design/methodology/approach
– The rationale behind the use of SVR was the fuzzy characteristics of the signal and its inherent ability to find nonlinear, global solutions in highly complex dimensional input spaces. Thus, SVR allows extracting useful information from calibration samples that makes it possible to characterize physical-chemical properties of the lubricant oils.
Findings
– A dataset of 42 spectra measured from oil standards was studied to assess the concentration of copper into the oils and, thus, evaluate the wearing of the machinery. It was found that the use of SVR was very advantageous to get a regression model.
Originality/value
– The use of genetic algorithms coupled to SVR was considered in order to reduce the time needed to find the optimal parameters required to get a suitable prediction model.</description><identifier>ISSN: 0264-4401</identifier><identifier>EISSN: 1758-7077</identifier><identifier>DOI: 10.1108/EC-03-2015-0062</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Aerospace engineering ; Atomic spectra ; Chemical properties ; Copper ; Datasets ; Design analysis ; Engineering ; Fuzzy ; Genetic algorithms ; Laboratories ; Lubricants ; Lubricants & lubrication ; Mathematical models ; Methods ; Mutation ; Neural networks ; Organic chemistry ; Principal components analysis ; Quality assessment ; Radiation ; Regression ; Regression analysis ; Regression models ; Scientific imaging ; Support vector machines ; Tournaments & championships</subject><ispartof>Engineering computations, 2016-06, Vol.33 (4), p.995-1005</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Emerald Group Publishing Limited 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-ace0f33d407ffb12c12ccb7a8eec04fdb0850547c3103962a9dee3abc59a3a9e3</citedby><cites>FETCH-LOGICAL-c382t-ace0f33d407ffb12c12ccb7a8eec04fdb0850547c3103962a9dee3abc59a3a9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084411449?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,36060,44362</link.rule.ids></links><search><creatorcontrib>Fernandez-Lozano, Carlos</creatorcontrib><creatorcontrib>Cedrón, Francisco</creatorcontrib><creatorcontrib>Rivero, Daniel</creatorcontrib><creatorcontrib>Dorado, Julian</creatorcontrib><creatorcontrib>Andrade-Garda, José Manuel</creatorcontrib><creatorcontrib>Pazos, Alejandro</creatorcontrib><creatorcontrib>Gestal, Marcos</creatorcontrib><title>Using genetic algorithms to improve support vector regression in the analysis of atomic spectra of lubricant oils</title><title>Engineering computations</title><description>Purpose
– The purpose of this paper is to assess the quality of commercial lubricant oils. A spectroscopic method was used in combination with multivariate regression techniques (ordinary multivariate multiple regression, principal components analysis, partial least squares, and support vector regression (SVR)).
Design/methodology/approach
– The rationale behind the use of SVR was the fuzzy characteristics of the signal and its inherent ability to find nonlinear, global solutions in highly complex dimensional input spaces. Thus, SVR allows extracting useful information from calibration samples that makes it possible to characterize physical-chemical properties of the lubricant oils.
Findings
– A dataset of 42 spectra measured from oil standards was studied to assess the concentration of copper into the oils and, thus, evaluate the wearing of the machinery. It was found that the use of SVR was very advantageous to get a regression model.
Originality/value
– The use of genetic algorithms coupled to SVR was considered in order to reduce the time needed to find the optimal parameters required to get a suitable prediction model.</description><subject>Aerospace engineering</subject><subject>Atomic spectra</subject><subject>Chemical properties</subject><subject>Copper</subject><subject>Datasets</subject><subject>Design analysis</subject><subject>Engineering</subject><subject>Fuzzy</subject><subject>Genetic algorithms</subject><subject>Laboratories</subject><subject>Lubricants</subject><subject>Lubricants & lubrication</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Mutation</subject><subject>Neural networks</subject><subject>Organic chemistry</subject><subject>Principal components analysis</subject><subject>Quality assessment</subject><subject>Radiation</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Scientific imaging</subject><subject>Support vector machines</subject><subject>Tournaments & championships</subject><issn>0264-4401</issn><issn>1758-7077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNptkU1LxDAQhoMouK6evQa8eKlOmnSbHmVZP0DwoueQZqe7WdqmZtIF_71d1osiDAwMz_vC8DB2LeBOCND3q2UGMstBFBnAIj9hM1EWOiuhLE_ZDPKFypQCcc4uiHYAUEoJM_b5Qb7f8A32mLzjtt2E6NO2I54C990Qwx45jcMQYuJ7dClEHnETkciHnvuepy1y29v2izzx0HCbQjc10TDB0R4u7VhH72yfePAtXbKzxraEVz97zj4eV-_L5-z17ell-fCaOanzlFmH0Ei5VlA2TS1yN42rS6sRHahmXYMuoFClkwJktchttUaUtnZFZaWtUM7Z7bF3-uFzREqm8-SwbW2PYSQjtFhAUWgtJ_TmD7oLY5x-IpODVkoIpaqJuj9SLgaiiI0Zou9s_DICzEGBWS0NSHNQYA4KpsTdMYEdRtuu_wn8cia_AVqeiOo</recordid><startdate>20160613</startdate><enddate>20160613</enddate><creator>Fernandez-Lozano, Carlos</creator><creator>Cedrón, Francisco</creator><creator>Rivero, Daniel</creator><creator>Dorado, Julian</creator><creator>Andrade-Garda, José Manuel</creator><creator>Pazos, Alejandro</creator><creator>Gestal, Marcos</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160613</creationdate><title>Using genetic algorithms to improve support vector regression in the analysis of atomic spectra of lubricant oils</title><author>Fernandez-Lozano, Carlos ; Cedrón, Francisco ; Rivero, Daniel ; Dorado, Julian ; Andrade-Garda, José Manuel ; Pazos, Alejandro ; Gestal, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-ace0f33d407ffb12c12ccb7a8eec04fdb0850547c3103962a9dee3abc59a3a9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerospace engineering</topic><topic>Atomic spectra</topic><topic>Chemical properties</topic><topic>Copper</topic><topic>Datasets</topic><topic>Design analysis</topic><topic>Engineering</topic><topic>Fuzzy</topic><topic>Genetic algorithms</topic><topic>Laboratories</topic><topic>Lubricants</topic><topic>Lubricants & lubrication</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Mutation</topic><topic>Neural networks</topic><topic>Organic chemistry</topic><topic>Principal components analysis</topic><topic>Quality assessment</topic><topic>Radiation</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Scientific imaging</topic><topic>Support vector machines</topic><topic>Tournaments & championships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez-Lozano, Carlos</creatorcontrib><creatorcontrib>Cedrón, Francisco</creatorcontrib><creatorcontrib>Rivero, Daniel</creatorcontrib><creatorcontrib>Dorado, Julian</creatorcontrib><creatorcontrib>Andrade-Garda, José Manuel</creatorcontrib><creatorcontrib>Pazos, Alejandro</creatorcontrib><creatorcontrib>Gestal, Marcos</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering computations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez-Lozano, Carlos</au><au>Cedrón, Francisco</au><au>Rivero, Daniel</au><au>Dorado, Julian</au><au>Andrade-Garda, José Manuel</au><au>Pazos, Alejandro</au><au>Gestal, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using genetic algorithms to improve support vector regression in the analysis of atomic spectra of lubricant oils</atitle><jtitle>Engineering computations</jtitle><date>2016-06-13</date><risdate>2016</risdate><volume>33</volume><issue>4</issue><spage>995</spage><epage>1005</epage><pages>995-1005</pages><issn>0264-4401</issn><eissn>1758-7077</eissn><abstract>Purpose
– The purpose of this paper is to assess the quality of commercial lubricant oils. A spectroscopic method was used in combination with multivariate regression techniques (ordinary multivariate multiple regression, principal components analysis, partial least squares, and support vector regression (SVR)).
Design/methodology/approach
– The rationale behind the use of SVR was the fuzzy characteristics of the signal and its inherent ability to find nonlinear, global solutions in highly complex dimensional input spaces. Thus, SVR allows extracting useful information from calibration samples that makes it possible to characterize physical-chemical properties of the lubricant oils.
Findings
– A dataset of 42 spectra measured from oil standards was studied to assess the concentration of copper into the oils and, thus, evaluate the wearing of the machinery. It was found that the use of SVR was very advantageous to get a regression model.
Originality/value
– The use of genetic algorithms coupled to SVR was considered in order to reduce the time needed to find the optimal parameters required to get a suitable prediction model.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/EC-03-2015-0062</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-4401 |
ispartof | Engineering computations, 2016-06, Vol.33 (4), p.995-1005 |
issn | 0264-4401 1758-7077 |
language | eng |
recordid | cdi_emerald_primary_10_1108_EC-03-2015-0062 |
source | ABI/INFORM Global; Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list) |
subjects | Aerospace engineering Atomic spectra Chemical properties Copper Datasets Design analysis Engineering Fuzzy Genetic algorithms Laboratories Lubricants Lubricants & lubrication Mathematical models Methods Mutation Neural networks Organic chemistry Principal components analysis Quality assessment Radiation Regression Regression analysis Regression models Scientific imaging Support vector machines Tournaments & championships |
title | Using genetic algorithms to improve support vector regression in the analysis of atomic spectra of lubricant oils |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20genetic%20algorithms%20to%20improve%20support%20vector%20regression%20in%20the%20analysis%20of%20atomic%20spectra%20of%20lubricant%20oils&rft.jtitle=Engineering%20computations&rft.au=Fernandez-Lozano,%20Carlos&rft.date=2016-06-13&rft.volume=33&rft.issue=4&rft.spage=995&rft.epage=1005&rft.pages=995-1005&rft.issn=0264-4401&rft.eissn=1758-7077&rft_id=info:doi/10.1108/EC-03-2015-0062&rft_dat=%3Cproquest_emera%3E1816055883%3C/proquest_emera%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-ace0f33d407ffb12c12ccb7a8eec04fdb0850547c3103962a9dee3abc59a3a9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084411449&rft_id=info:pmid/&rfr_iscdi=true |