Loading…

Using genetic algorithms to improve support vector regression in the analysis of atomic spectra of lubricant oils

Purpose – The purpose of this paper is to assess the quality of commercial lubricant oils. A spectroscopic method was used in combination with multivariate regression techniques (ordinary multivariate multiple regression, principal components analysis, partial least squares, and support vector regre...

Full description

Saved in:
Bibliographic Details
Published in:Engineering computations 2016-06, Vol.33 (4), p.995-1005
Main Authors: Fernandez-Lozano, Carlos, Cedrón, Francisco, Rivero, Daniel, Dorado, Julian, Andrade-Garda, José Manuel, Pazos, Alejandro, Gestal, Marcos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-ace0f33d407ffb12c12ccb7a8eec04fdb0850547c3103962a9dee3abc59a3a9e3
cites cdi_FETCH-LOGICAL-c382t-ace0f33d407ffb12c12ccb7a8eec04fdb0850547c3103962a9dee3abc59a3a9e3
container_end_page 1005
container_issue 4
container_start_page 995
container_title Engineering computations
container_volume 33
creator Fernandez-Lozano, Carlos
Cedrón, Francisco
Rivero, Daniel
Dorado, Julian
Andrade-Garda, José Manuel
Pazos, Alejandro
Gestal, Marcos
description Purpose – The purpose of this paper is to assess the quality of commercial lubricant oils. A spectroscopic method was used in combination with multivariate regression techniques (ordinary multivariate multiple regression, principal components analysis, partial least squares, and support vector regression (SVR)). Design/methodology/approach – The rationale behind the use of SVR was the fuzzy characteristics of the signal and its inherent ability to find nonlinear, global solutions in highly complex dimensional input spaces. Thus, SVR allows extracting useful information from calibration samples that makes it possible to characterize physical-chemical properties of the lubricant oils. Findings – A dataset of 42 spectra measured from oil standards was studied to assess the concentration of copper into the oils and, thus, evaluate the wearing of the machinery. It was found that the use of SVR was very advantageous to get a regression model. Originality/value – The use of genetic algorithms coupled to SVR was considered in order to reduce the time needed to find the optimal parameters required to get a suitable prediction model.
doi_str_mv 10.1108/EC-03-2015-0062
format article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_EC-03-2015-0062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816055883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-ace0f33d407ffb12c12ccb7a8eec04fdb0850547c3103962a9dee3abc59a3a9e3</originalsourceid><addsrcrecordid>eNptkU1LxDAQhoMouK6evQa8eKlOmnSbHmVZP0DwoueQZqe7WdqmZtIF_71d1osiDAwMz_vC8DB2LeBOCND3q2UGMstBFBnAIj9hM1EWOiuhLE_ZDPKFypQCcc4uiHYAUEoJM_b5Qb7f8A32mLzjtt2E6NO2I54C990Qwx45jcMQYuJ7dClEHnETkciHnvuepy1y29v2izzx0HCbQjc10TDB0R4u7VhH72yfePAtXbKzxraEVz97zj4eV-_L5-z17ell-fCaOanzlFmH0Ei5VlA2TS1yN42rS6sRHahmXYMuoFClkwJktchttUaUtnZFZaWtUM7Z7bF3-uFzREqm8-SwbW2PYSQjtFhAUWgtJ_TmD7oLY5x-IpODVkoIpaqJuj9SLgaiiI0Zou9s_DICzEGBWS0NSHNQYA4KpsTdMYEdRtuu_wn8cia_AVqeiOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084411449</pqid></control><display><type>article</type><title>Using genetic algorithms to improve support vector regression in the analysis of atomic spectra of lubricant oils</title><source>ABI/INFORM Global</source><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Fernandez-Lozano, Carlos ; Cedrón, Francisco ; Rivero, Daniel ; Dorado, Julian ; Andrade-Garda, José Manuel ; Pazos, Alejandro ; Gestal, Marcos</creator><creatorcontrib>Fernandez-Lozano, Carlos ; Cedrón, Francisco ; Rivero, Daniel ; Dorado, Julian ; Andrade-Garda, José Manuel ; Pazos, Alejandro ; Gestal, Marcos</creatorcontrib><description>Purpose – The purpose of this paper is to assess the quality of commercial lubricant oils. A spectroscopic method was used in combination with multivariate regression techniques (ordinary multivariate multiple regression, principal components analysis, partial least squares, and support vector regression (SVR)). Design/methodology/approach – The rationale behind the use of SVR was the fuzzy characteristics of the signal and its inherent ability to find nonlinear, global solutions in highly complex dimensional input spaces. Thus, SVR allows extracting useful information from calibration samples that makes it possible to characterize physical-chemical properties of the lubricant oils. Findings – A dataset of 42 spectra measured from oil standards was studied to assess the concentration of copper into the oils and, thus, evaluate the wearing of the machinery. It was found that the use of SVR was very advantageous to get a regression model. Originality/value – The use of genetic algorithms coupled to SVR was considered in order to reduce the time needed to find the optimal parameters required to get a suitable prediction model.</description><identifier>ISSN: 0264-4401</identifier><identifier>EISSN: 1758-7077</identifier><identifier>DOI: 10.1108/EC-03-2015-0062</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Aerospace engineering ; Atomic spectra ; Chemical properties ; Copper ; Datasets ; Design analysis ; Engineering ; Fuzzy ; Genetic algorithms ; Laboratories ; Lubricants ; Lubricants &amp; lubrication ; Mathematical models ; Methods ; Mutation ; Neural networks ; Organic chemistry ; Principal components analysis ; Quality assessment ; Radiation ; Regression ; Regression analysis ; Regression models ; Scientific imaging ; Support vector machines ; Tournaments &amp; championships</subject><ispartof>Engineering computations, 2016-06, Vol.33 (4), p.995-1005</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Emerald Group Publishing Limited 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-ace0f33d407ffb12c12ccb7a8eec04fdb0850547c3103962a9dee3abc59a3a9e3</citedby><cites>FETCH-LOGICAL-c382t-ace0f33d407ffb12c12ccb7a8eec04fdb0850547c3103962a9dee3abc59a3a9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084411449?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,36060,44362</link.rule.ids></links><search><creatorcontrib>Fernandez-Lozano, Carlos</creatorcontrib><creatorcontrib>Cedrón, Francisco</creatorcontrib><creatorcontrib>Rivero, Daniel</creatorcontrib><creatorcontrib>Dorado, Julian</creatorcontrib><creatorcontrib>Andrade-Garda, José Manuel</creatorcontrib><creatorcontrib>Pazos, Alejandro</creatorcontrib><creatorcontrib>Gestal, Marcos</creatorcontrib><title>Using genetic algorithms to improve support vector regression in the analysis of atomic spectra of lubricant oils</title><title>Engineering computations</title><description>Purpose – The purpose of this paper is to assess the quality of commercial lubricant oils. A spectroscopic method was used in combination with multivariate regression techniques (ordinary multivariate multiple regression, principal components analysis, partial least squares, and support vector regression (SVR)). Design/methodology/approach – The rationale behind the use of SVR was the fuzzy characteristics of the signal and its inherent ability to find nonlinear, global solutions in highly complex dimensional input spaces. Thus, SVR allows extracting useful information from calibration samples that makes it possible to characterize physical-chemical properties of the lubricant oils. Findings – A dataset of 42 spectra measured from oil standards was studied to assess the concentration of copper into the oils and, thus, evaluate the wearing of the machinery. It was found that the use of SVR was very advantageous to get a regression model. Originality/value – The use of genetic algorithms coupled to SVR was considered in order to reduce the time needed to find the optimal parameters required to get a suitable prediction model.</description><subject>Aerospace engineering</subject><subject>Atomic spectra</subject><subject>Chemical properties</subject><subject>Copper</subject><subject>Datasets</subject><subject>Design analysis</subject><subject>Engineering</subject><subject>Fuzzy</subject><subject>Genetic algorithms</subject><subject>Laboratories</subject><subject>Lubricants</subject><subject>Lubricants &amp; lubrication</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Mutation</subject><subject>Neural networks</subject><subject>Organic chemistry</subject><subject>Principal components analysis</subject><subject>Quality assessment</subject><subject>Radiation</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Scientific imaging</subject><subject>Support vector machines</subject><subject>Tournaments &amp; championships</subject><issn>0264-4401</issn><issn>1758-7077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNptkU1LxDAQhoMouK6evQa8eKlOmnSbHmVZP0DwoueQZqe7WdqmZtIF_71d1osiDAwMz_vC8DB2LeBOCND3q2UGMstBFBnAIj9hM1EWOiuhLE_ZDPKFypQCcc4uiHYAUEoJM_b5Qb7f8A32mLzjtt2E6NO2I54C990Qwx45jcMQYuJ7dClEHnETkciHnvuepy1y29v2izzx0HCbQjc10TDB0R4u7VhH72yfePAtXbKzxraEVz97zj4eV-_L5-z17ell-fCaOanzlFmH0Ei5VlA2TS1yN42rS6sRHahmXYMuoFClkwJktchttUaUtnZFZaWtUM7Z7bF3-uFzREqm8-SwbW2PYSQjtFhAUWgtJ_TmD7oLY5x-IpODVkoIpaqJuj9SLgaiiI0Zou9s_DICzEGBWS0NSHNQYA4KpsTdMYEdRtuu_wn8cia_AVqeiOo</recordid><startdate>20160613</startdate><enddate>20160613</enddate><creator>Fernandez-Lozano, Carlos</creator><creator>Cedrón, Francisco</creator><creator>Rivero, Daniel</creator><creator>Dorado, Julian</creator><creator>Andrade-Garda, José Manuel</creator><creator>Pazos, Alejandro</creator><creator>Gestal, Marcos</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160613</creationdate><title>Using genetic algorithms to improve support vector regression in the analysis of atomic spectra of lubricant oils</title><author>Fernandez-Lozano, Carlos ; Cedrón, Francisco ; Rivero, Daniel ; Dorado, Julian ; Andrade-Garda, José Manuel ; Pazos, Alejandro ; Gestal, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-ace0f33d407ffb12c12ccb7a8eec04fdb0850547c3103962a9dee3abc59a3a9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerospace engineering</topic><topic>Atomic spectra</topic><topic>Chemical properties</topic><topic>Copper</topic><topic>Datasets</topic><topic>Design analysis</topic><topic>Engineering</topic><topic>Fuzzy</topic><topic>Genetic algorithms</topic><topic>Laboratories</topic><topic>Lubricants</topic><topic>Lubricants &amp; lubrication</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Mutation</topic><topic>Neural networks</topic><topic>Organic chemistry</topic><topic>Principal components analysis</topic><topic>Quality assessment</topic><topic>Radiation</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Scientific imaging</topic><topic>Support vector machines</topic><topic>Tournaments &amp; championships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez-Lozano, Carlos</creatorcontrib><creatorcontrib>Cedrón, Francisco</creatorcontrib><creatorcontrib>Rivero, Daniel</creatorcontrib><creatorcontrib>Dorado, Julian</creatorcontrib><creatorcontrib>Andrade-Garda, José Manuel</creatorcontrib><creatorcontrib>Pazos, Alejandro</creatorcontrib><creatorcontrib>Gestal, Marcos</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering computations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez-Lozano, Carlos</au><au>Cedrón, Francisco</au><au>Rivero, Daniel</au><au>Dorado, Julian</au><au>Andrade-Garda, José Manuel</au><au>Pazos, Alejandro</au><au>Gestal, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using genetic algorithms to improve support vector regression in the analysis of atomic spectra of lubricant oils</atitle><jtitle>Engineering computations</jtitle><date>2016-06-13</date><risdate>2016</risdate><volume>33</volume><issue>4</issue><spage>995</spage><epage>1005</epage><pages>995-1005</pages><issn>0264-4401</issn><eissn>1758-7077</eissn><abstract>Purpose – The purpose of this paper is to assess the quality of commercial lubricant oils. A spectroscopic method was used in combination with multivariate regression techniques (ordinary multivariate multiple regression, principal components analysis, partial least squares, and support vector regression (SVR)). Design/methodology/approach – The rationale behind the use of SVR was the fuzzy characteristics of the signal and its inherent ability to find nonlinear, global solutions in highly complex dimensional input spaces. Thus, SVR allows extracting useful information from calibration samples that makes it possible to characterize physical-chemical properties of the lubricant oils. Findings – A dataset of 42 spectra measured from oil standards was studied to assess the concentration of copper into the oils and, thus, evaluate the wearing of the machinery. It was found that the use of SVR was very advantageous to get a regression model. Originality/value – The use of genetic algorithms coupled to SVR was considered in order to reduce the time needed to find the optimal parameters required to get a suitable prediction model.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/EC-03-2015-0062</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0264-4401
ispartof Engineering computations, 2016-06, Vol.33 (4), p.995-1005
issn 0264-4401
1758-7077
language eng
recordid cdi_emerald_primary_10_1108_EC-03-2015-0062
source ABI/INFORM Global; Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)
subjects Aerospace engineering
Atomic spectra
Chemical properties
Copper
Datasets
Design analysis
Engineering
Fuzzy
Genetic algorithms
Laboratories
Lubricants
Lubricants & lubrication
Mathematical models
Methods
Mutation
Neural networks
Organic chemistry
Principal components analysis
Quality assessment
Radiation
Regression
Regression analysis
Regression models
Scientific imaging
Support vector machines
Tournaments & championships
title Using genetic algorithms to improve support vector regression in the analysis of atomic spectra of lubricant oils
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20genetic%20algorithms%20to%20improve%20support%20vector%20regression%20in%20the%20analysis%20of%20atomic%20spectra%20of%20lubricant%20oils&rft.jtitle=Engineering%20computations&rft.au=Fernandez-Lozano,%20Carlos&rft.date=2016-06-13&rft.volume=33&rft.issue=4&rft.spage=995&rft.epage=1005&rft.pages=995-1005&rft.issn=0264-4401&rft.eissn=1758-7077&rft_id=info:doi/10.1108/EC-03-2015-0062&rft_dat=%3Cproquest_emera%3E1816055883%3C/proquest_emera%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-ace0f33d407ffb12c12ccb7a8eec04fdb0850547c3103962a9dee3abc59a3a9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084411449&rft_id=info:pmid/&rfr_iscdi=true