Loading…

Evidential uncertainty quantification of the Park–Ang damage model in performance based design

Purpose This paper aims to develop a comprehensive uncertainty quantification method using evidence theory for Park–Ang damage index-based performance design in which epistemic uncertainties are considered. Various sources of uncertainty emanating from the database of the cyclic test results of RC m...

Full description

Saved in:
Bibliographic Details
Published in:Engineering computations 2018-10, Vol.35 (7), p.2480-2501
Main Authors: Tang, Hesheng, Li, Dawei, Deng, Lixin, Xue, Songtao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose This paper aims to develop a comprehensive uncertainty quantification method using evidence theory for Park–Ang damage index-based performance design in which epistemic uncertainties are considered. Various sources of uncertainty emanating from the database of the cyclic test results of RC members provided by the Pacific Earthquake Engineering Research Center are taken into account. Design/methodology/approach In this paper, an uncertainty quantification methodology based on evidence theory is presented for the whole process of performance-based seismic design (PBSD), while considering uncertainty in the Park–Ang damage model. To alleviate the burden of high computational cost in propagating uncertainty, the differential evolution interval optimization strategy is used for efficiently finding the propagated belief structure throughout the whole design process. Findings The investigation results of this paper demonstrate that the uncertainty rooted in Park–Ang damage model have a significant influence on PBSD design and evaluation. It might be worth noting that the epistemic uncertainty present in the Park–Ang damage model needs to be considered to avoid underestimating the true uncertainty. Originality/value This paper presents an evidence theory-based uncertainty quantification framework for the whole process of PBSD.
ISSN:0264-4401
1758-7077
DOI:10.1108/EC-11-2017-0466