Loading…

KEFST: a knowledge extraction framework using finite-state transducers

Purpose The purpose of this research study is to extract and identify named entities from Hadith literature. Named entity recognition (NER) refers to the identification of the named entities in a computer readable text having an annotation of categorization tags for information extraction. NER is an...

Full description

Saved in:
Bibliographic Details
Published in:Electronic library 2019-06, Vol.37 (2), p.365-384
Main Authors: Mahmood, Ahsan, Khan, Hikmat Ullah, Rehman, Zahoor Ur, Iqbal, Khalid, Faisal, Ch. Muhmmad Shahzad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose The purpose of this research study is to extract and identify named entities from Hadith literature. Named entity recognition (NER) refers to the identification of the named entities in a computer readable text having an annotation of categorization tags for information extraction. NER is an active research area in information management and information retrieval systems. NER serves as a baseline for machines to understand the context of a given content and helps in knowledge extraction. Although NER is considered as a solved task in major languages such as English, in languages such as Urdu, NER is still a challenging task. Moreover, NER depends on the language and domain of study; thus, it is gaining the attention of researchers in different domains. Design/methodology/approach This paper proposes a knowledge extraction framework using finite-state transducers (FSTs) – KEFST – to extract the named entities. KEFST consists of five steps: content extraction, tokenization, part of speech tagging, multi-word detection and NER. An extensive empirical analysis using the data corpus of Urdu translation of Sahih Al-Bukhari, a widely known hadith book, reveals that the proposed method effectively recognizes the entities to obtain better results. Findings The significant performance in terms of f-measure, precision and recall validates that the proposed model outperforms the existing methods for NER in the relevant literature. Originality/value This research is novel in this regard that no previous work is proposed in the Urdu language to extract named entities using FSTs and no previous work is proposed for Urdu hadith data NER.
ISSN:0264-0473
1758-616X
1758-616X
DOI:10.1108/EL-10-2018-0196