Loading…

Numerical investigation on the forced laminar convection heat transfer of Al2O3-water nanofluid within a three-dimensional asymmetric heated channel

Purpose The purpose of this paper is to carry out a numerical investigation to study laminar convection flow of Al2O3-water nanofluids within a three-dimensional rectangular section channel asymmetrically heated. Design/methodology/approach A three-dimensional model of the channel is designed and si...

Full description

Saved in:
Bibliographic Details
Published in:International journal of numerical methods for heat & fluid flow 2019-02, Vol.29 (3), p.1132-1152
Main Authors: Bianco, Vincenzo, Marchitto, Annalisa, Scarpa, Federico, Tagliafico, Luca Antonio
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose The purpose of this paper is to carry out a numerical investigation to study laminar convection flow of Al2O3-water nanofluids within a three-dimensional rectangular section channel asymmetrically heated. Design/methodology/approach A three-dimensional model of the channel is designed and simulated by using Comsol Multiphysics. The finite elements method is used to perform the numerical simulation. A variety of cases are taken into account by considering Reynolds numbers ranging from 250 up to 1,000, concentration between 0 and 6 per cent, particle dimension of 20, 40 and 60 nm and inlet temperature equal to 293.15 and 320 K. A constant heat flux of 1,000 W/m2 is imposed on the top surface of the channel. Findings The results demonstrate that nanofluids guarantee improved thermal performances with respect to the base fluid, as shown by the augmented Nusselt number. On the other hand, pressure drop shows a noticeable increase; therefore, an entropy generation analysis is developed to establish optimal conditions for the system under investigation. Originality/value The originality of this work consists in the analysis of a three-dimensional asymmetric heated channel with nanofluids in laminar convection. The present work would be beneficial to improve the design of devices with particular focus on solar thermal panel.
ISSN:0961-5539
1758-6585
DOI:10.1108/HFF-09-2018-0471