Loading…
Tribological and electrochemical behavior of Ag2O/ZnO/NiO nanocomposite coating on commercial pure titanium for biomedical applications
Purpose This paper aims to investigate the structural, tribological and electrochemical properties of Ag2O, ZnO, NiO coatings and Ag2O/ZnO/NiO nanocomposite films deposited on commercially pure titanium. Design/methodology/approach Ceramic thin films (Ag2O, ZnO, NiO coatings and Ag2O/ZnO/NiO nanocom...
Saved in:
Published in: | Industrial lubrication and tribology 2019-11, Vol.71 (10), p.1166-1176 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
This paper aims to investigate the structural, tribological and electrochemical properties of Ag2O, ZnO, NiO coatings and Ag2O/ZnO/NiO nanocomposite films deposited on commercially pure titanium.
Design/methodology/approach
Ceramic thin films (Ag2O, ZnO, NiO coatings and Ag2O/ZnO/NiO nanocomposite film) were deposited on commercially pure titanium (CP-Ti) substrate. Surface characterization of the uncoated and coated samples was made by structural surveys (scanning electron microscopic examinations and X-ray diffraction analyses), hardness measurements, tribological and corrosion experiments.
Findings
Results were indicated that sol-gel coatings improved the wear and corrosion resistance of CP-Ti, and the best results were seen at the nanocomposite coating. It may be attributed to its small grain size, high surface hardness and high film thickness.
Originality/value
This study can be a practical reference and offers insight into the influence of nanocomposite ceramic films on the increase of hardness, tribological and corrosion performance. Also, the paper displayed a promising approach to produce Ag2O/ZnO/NiO nanocomposite coating on commercially pure titanium implants for biomedical applications. |
---|---|
ISSN: | 0036-8792 1758-5775 |
DOI: | 10.1108/ILT-11-2018-0414 |