Loading…

Study on the influence of vent area on porosity-controlled wood crib compartment fires prior to flashover

PurposeThis study describes a series of experiments investigating the upper hot layer temperature profile in a confined space under different ventilation conditions for porosity-controlled wood crib fires for pre-flashover conditions.Design/methodology/approachFull-scale compartment (4 m × 4 m × 4 m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of structural fire engineering 2024-05, Vol.15 (2), p.177-191
Main Authors: Narang, Aishwarya, Kumar, Ravi, Dhiman, Amit Kumar, Pandey, Ravi Shankar, Sharma, Pavan Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:PurposeThis study describes a series of experiments investigating the upper hot layer temperature profile in a confined space under different ventilation conditions for porosity-controlled wood crib fires for pre-flashover conditions.Design/methodology/approachFull-scale compartment (4 m × 4 m × 4 m) experiments were carried out for four-door openings, i.e. 100%, 75%, 50% and 25% of the total vent area (2 m × 1 m) with the wood crib as a fuel load. The temperature of the upper hot smoke layers of the compartment was recorded with the help of four layers of thermocouples for varying vent areas.FindingsThe effect of ventilation on the properties, i.e. mass loss rate, enclosure temperature, heat release rate and carbon monoxide (CO) gas concentration, has been measured and analyzed. The effect of ventilation on heat flux and flame temperature has also been studied. Compartment gas temperature has been examined by five wood crib burning stages: Ignition, growth, steady burning, recess and collapse.Originality/valueFindings demonstrate that the influence of vent openings varies for the burning parameters and upper layer temperature of the compartment. The current results are beneficial in analyzing thermal risks concerning compartment fire and fire safety engineering projects.
ISSN:2040-2317
2040-2325
DOI:10.1108/JSFE-04-2023-0024