Loading…

An optimal charging strategy for crowdsourcing platforms

Purpose The purpose of this paper is to develop an optimal charging strategy for a third-party crowdsourcing platform. Design/methodology/approach Based on the auction theory, the Stackelberg game theory and the systems theory, this paper presents a new model from the perspective of risk sharing bet...

Full description

Saved in:
Bibliographic Details
Published in:Kybernetes 2020-06, Vol.49 (6), p.1605-1621
Main Authors: Chen, Jiumei, Liu, Zhiying, Zhang, Wen, Gong, Bengang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c305t-667a7304207becd63a6b3bed33b5f53f1be2936e3018e1cd7995cf9d485cda943
cites cdi_FETCH-LOGICAL-c305t-667a7304207becd63a6b3bed33b5f53f1be2936e3018e1cd7995cf9d485cda943
container_end_page 1621
container_issue 6
container_start_page 1605
container_title Kybernetes
container_volume 49
creator Chen, Jiumei
Liu, Zhiying
Zhang, Wen
Gong, Bengang
description Purpose The purpose of this paper is to develop an optimal charging strategy for a third-party crowdsourcing platform. Design/methodology/approach Based on the auction theory, the Stackelberg game theory and the systems theory, this paper presents a new model from the perspective of risk sharing between solution seekers and the crowdsourcing platform, given the utility maximization of the seekers, the crowdsourcing platform and the solvers. Findings Based on the results, this study shows that the menu of fees, which includes different combinations of a fixed fee and a floating fee schedule, should be designed to attract both solution seekers and solvers. In addition, the related prize setting and the expected payoff for each party are presented. Practical implications This study is beneficial for crowdsourcing platform operators, as it provides a new way to design charging strategies and can help in understanding key influential factors. Originality/value To the best of the authors’ knowledge, this study is one of the first to simulate the interactions among the three stakeholders, thereby providing a novel model that includes a fixed fee and a floating commission.
doi_str_mv 10.1108/K-03-2019-0173
format article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_K-03-2019-0173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533390681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-667a7304207becd63a6b3bed33b5f53f1be2936e3018e1cd7995cf9d485cda943</originalsourceid><addsrcrecordid>eNplkM1LAzEQxYMoWKtXzwueUyeZzdexFL9owYuCt5DNZmvLtrsmW6T_vVnqRTwNzLw38-ZHyC2DGWOg75cUkHJghgJTeEYmTAlNldZ4TiaAUtPS8I9LcpXSFoBxyWFC9HxfdP2w2bm28J8urjf7dZGG6IawPhZNFwsfu-86dYfox1HfuiF3d-maXDSuTeHmt07J--PD2-KZrl6fXhbzFfUIYqBSKqcQSg6qCr6W6GSFVagRK9EIbFgVuEEZEJgOzNfKGOEbU5da-NqZEqfk7rS3j93XIaTBbnOWfT5puUBEA1KzrJqdVDltSjE0to_5p3i0DOxIxy4toB3p2JFONtCTIexCdG39X_-HJv4ASQNkcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533390681</pqid></control><display><type>article</type><title>An optimal charging strategy for crowdsourcing platforms</title><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Chen, Jiumei ; Liu, Zhiying ; Zhang, Wen ; Gong, Bengang</creator><creatorcontrib>Chen, Jiumei ; Liu, Zhiying ; Zhang, Wen ; Gong, Bengang</creatorcontrib><description>Purpose The purpose of this paper is to develop an optimal charging strategy for a third-party crowdsourcing platform. Design/methodology/approach Based on the auction theory, the Stackelberg game theory and the systems theory, this paper presents a new model from the perspective of risk sharing between solution seekers and the crowdsourcing platform, given the utility maximization of the seekers, the crowdsourcing platform and the solvers. Findings Based on the results, this study shows that the menu of fees, which includes different combinations of a fixed fee and a floating fee schedule, should be designed to attract both solution seekers and solvers. In addition, the related prize setting and the expected payoff for each party are presented. Practical implications This study is beneficial for crowdsourcing platform operators, as it provides a new way to design charging strategies and can help in understanding key influential factors. Originality/value To the best of the authors’ knowledge, this study is one of the first to simulate the interactions among the three stakeholders, thereby providing a novel model that includes a fixed fee and a floating commission.</description><identifier>ISSN: 0368-492X</identifier><identifier>EISSN: 1758-7883</identifier><identifier>DOI: 10.1108/K-03-2019-0173</identifier><language>eng</language><publisher>London: Emerald Publishing Limited</publisher><subject>Charging ; Collaboration ; Crowdsourcing ; Data collection ; Game theory ; Innovations ; Internet ; Labor market ; Library management ; Linux ; Literature reviews ; Open source software ; Optimization ; Prediction markets ; Product development ; Public policy ; Risk sharing ; Schedules ; Solvers ; Strategy ; Success ; Systems theory ; Third party</subject><ispartof>Kybernetes, 2020-06, Vol.49 (6), p.1605-1621</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-667a7304207becd63a6b3bed33b5f53f1be2936e3018e1cd7995cf9d485cda943</citedby><cites>FETCH-LOGICAL-c305t-667a7304207becd63a6b3bed33b5f53f1be2936e3018e1cd7995cf9d485cda943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Jiumei</creatorcontrib><creatorcontrib>Liu, Zhiying</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Gong, Bengang</creatorcontrib><title>An optimal charging strategy for crowdsourcing platforms</title><title>Kybernetes</title><description>Purpose The purpose of this paper is to develop an optimal charging strategy for a third-party crowdsourcing platform. Design/methodology/approach Based on the auction theory, the Stackelberg game theory and the systems theory, this paper presents a new model from the perspective of risk sharing between solution seekers and the crowdsourcing platform, given the utility maximization of the seekers, the crowdsourcing platform and the solvers. Findings Based on the results, this study shows that the menu of fees, which includes different combinations of a fixed fee and a floating fee schedule, should be designed to attract both solution seekers and solvers. In addition, the related prize setting and the expected payoff for each party are presented. Practical implications This study is beneficial for crowdsourcing platform operators, as it provides a new way to design charging strategies and can help in understanding key influential factors. Originality/value To the best of the authors’ knowledge, this study is one of the first to simulate the interactions among the three stakeholders, thereby providing a novel model that includes a fixed fee and a floating commission.</description><subject>Charging</subject><subject>Collaboration</subject><subject>Crowdsourcing</subject><subject>Data collection</subject><subject>Game theory</subject><subject>Innovations</subject><subject>Internet</subject><subject>Labor market</subject><subject>Library management</subject><subject>Linux</subject><subject>Literature reviews</subject><subject>Open source software</subject><subject>Optimization</subject><subject>Prediction markets</subject><subject>Product development</subject><subject>Public policy</subject><subject>Risk sharing</subject><subject>Schedules</subject><subject>Solvers</subject><subject>Strategy</subject><subject>Success</subject><subject>Systems theory</subject><subject>Third party</subject><issn>0368-492X</issn><issn>1758-7883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNplkM1LAzEQxYMoWKtXzwueUyeZzdexFL9owYuCt5DNZmvLtrsmW6T_vVnqRTwNzLw38-ZHyC2DGWOg75cUkHJghgJTeEYmTAlNldZ4TiaAUtPS8I9LcpXSFoBxyWFC9HxfdP2w2bm28J8urjf7dZGG6IawPhZNFwsfu-86dYfox1HfuiF3d-maXDSuTeHmt07J--PD2-KZrl6fXhbzFfUIYqBSKqcQSg6qCr6W6GSFVagRK9EIbFgVuEEZEJgOzNfKGOEbU5da-NqZEqfk7rS3j93XIaTBbnOWfT5puUBEA1KzrJqdVDltSjE0to_5p3i0DOxIxy4toB3p2JFONtCTIexCdG39X_-HJv4ASQNkcw</recordid><startdate>20200611</startdate><enddate>20200611</enddate><creator>Chen, Jiumei</creator><creator>Liu, Zhiying</creator><creator>Zhang, Wen</creator><creator>Gong, Bengang</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20200611</creationdate><title>An optimal charging strategy for crowdsourcing platforms</title><author>Chen, Jiumei ; Liu, Zhiying ; Zhang, Wen ; Gong, Bengang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-667a7304207becd63a6b3bed33b5f53f1be2936e3018e1cd7995cf9d485cda943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charging</topic><topic>Collaboration</topic><topic>Crowdsourcing</topic><topic>Data collection</topic><topic>Game theory</topic><topic>Innovations</topic><topic>Internet</topic><topic>Labor market</topic><topic>Library management</topic><topic>Linux</topic><topic>Literature reviews</topic><topic>Open source software</topic><topic>Optimization</topic><topic>Prediction markets</topic><topic>Product development</topic><topic>Public policy</topic><topic>Risk sharing</topic><topic>Schedules</topic><topic>Solvers</topic><topic>Strategy</topic><topic>Success</topic><topic>Systems theory</topic><topic>Third party</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiumei</creatorcontrib><creatorcontrib>Liu, Zhiying</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Gong, Bengang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Kybernetes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jiumei</au><au>Liu, Zhiying</au><au>Zhang, Wen</au><au>Gong, Bengang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimal charging strategy for crowdsourcing platforms</atitle><jtitle>Kybernetes</jtitle><date>2020-06-11</date><risdate>2020</risdate><volume>49</volume><issue>6</issue><spage>1605</spage><epage>1621</epage><pages>1605-1621</pages><issn>0368-492X</issn><eissn>1758-7883</eissn><abstract>Purpose The purpose of this paper is to develop an optimal charging strategy for a third-party crowdsourcing platform. Design/methodology/approach Based on the auction theory, the Stackelberg game theory and the systems theory, this paper presents a new model from the perspective of risk sharing between solution seekers and the crowdsourcing platform, given the utility maximization of the seekers, the crowdsourcing platform and the solvers. Findings Based on the results, this study shows that the menu of fees, which includes different combinations of a fixed fee and a floating fee schedule, should be designed to attract both solution seekers and solvers. In addition, the related prize setting and the expected payoff for each party are presented. Practical implications This study is beneficial for crowdsourcing platform operators, as it provides a new way to design charging strategies and can help in understanding key influential factors. Originality/value To the best of the authors’ knowledge, this study is one of the first to simulate the interactions among the three stakeholders, thereby providing a novel model that includes a fixed fee and a floating commission.</abstract><cop>London</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/K-03-2019-0173</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0368-492X
ispartof Kybernetes, 2020-06, Vol.49 (6), p.1605-1621
issn 0368-492X
1758-7883
language eng
recordid cdi_emerald_primary_10_1108_K-03-2019-0173
source Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)
subjects Charging
Collaboration
Crowdsourcing
Data collection
Game theory
Innovations
Internet
Labor market
Library management
Linux
Literature reviews
Open source software
Optimization
Prediction markets
Product development
Public policy
Risk sharing
Schedules
Solvers
Strategy
Success
Systems theory
Third party
title An optimal charging strategy for crowdsourcing platforms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimal%20charging%20strategy%20for%20crowdsourcing%20platforms&rft.jtitle=Kybernetes&rft.au=Chen,%20Jiumei&rft.date=2020-06-11&rft.volume=49&rft.issue=6&rft.spage=1605&rft.epage=1621&rft.pages=1605-1621&rft.issn=0368-492X&rft.eissn=1758-7883&rft_id=info:doi/10.1108/K-03-2019-0173&rft_dat=%3Cproquest_emera%3E2533390681%3C/proquest_emera%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-667a7304207becd63a6b3bed33b5f53f1be2936e3018e1cd7995cf9d485cda943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2533390681&rft_id=info:pmid/&rfr_iscdi=true