Loading…

Suction and injection effect on flow between two plates with reference to Casson fluid model

Purpose The purpose of this paper is to study the effect of injection and suction on velocity profile, skin friction and pressure distribution of a Casson fluid flow between two parallel infinite rectangular plates approaching or receding from each other with suction or injection at the porous plate...

Full description

Saved in:
Bibliographic Details
Published in:Multidiscipline modeling in materials and structures 2019-05, Vol.15 (3), p.559-574
Main Authors: V.S, Sampath Kumar, Pai, N.P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose The purpose of this paper is to study the effect of injection and suction on velocity profile, skin friction and pressure distribution of a Casson fluid flow between two parallel infinite rectangular plates approaching or receding from each other with suction or injection at the porous plates. Design/methodology/approach The governing Navier–Stokes equations are reduced to the fourth-order non-linear ordinary differential equation through the similarity transformations. The approximated analytic solution based on the Homotopy perturbation method is given and also compared with the classical finite difference method. Findings From this study, the authors observed that the skin friction is less in non-Newtonian fluids compared to Newtonian fluids. The use of non-Newtonian fluids reduces the pressure in all the cases compared to Newtonian and hence load-carrying capacity will be more. As γ value increases velocity, skin friction and pressure decreases. When γ is fixed, it is observed that skin friction and pressure is minimum for A=0.5 and maximum when A=−0.5. The result of this study also shows that the effect of suction on the velocity profiles, pressure and skin friction is opposite to the effect of injection. Originality/value The present work analyzes the characteristic of non-Newtonian fluid having practical and industrial applications.
ISSN:1573-6105
1573-6113
DOI:10.1108/MMMS-05-2018-0092