Loading…
Derivative Sign Patterns in Two Dimensions
Given a function defined on a subset of the plane whose partial derivatives never change sign, the signs of the partial derivatives form a two-dimensional pattern. We explore what patterns are possible for various planar domains.
Saved in:
Published in: | The College mathematics journal 2013-03, Vol.44 (2), p.102-108 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c272t-2640dc0e5fee5d79a320dc73c36afa7f22523ce72efe5b017e9cc483b0bb0e4b3 |
container_end_page | 108 |
container_issue | 2 |
container_start_page | 102 |
container_title | The College mathematics journal |
container_volume | 44 |
creator | Schilling, Kenneth |
description | Given a function defined on a subset of the plane whose partial derivatives never change sign, the signs of the partial derivatives form a two-dimensional pattern. We explore what patterns are possible for various planar domains. |
doi_str_mv | 10.4169/college.math.j.44.2.102 |
format | article |
fullrecord | <record><control><sourceid>jstor_eric_</sourceid><recordid>TN_cdi_eric_primary_EJ1014571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1014571</ericid><jstor_id>10.4169/college.math.j.44.2.102</jstor_id><sourcerecordid>10.4169/college.math.j.44.2.102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-2640dc0e5fee5d79a320dc73c36afa7f22523ce72efe5b017e9cc483b0bb0e4b3</originalsourceid><addsrcrecordid>eNqVkN1LwzAUxYMoOKd_gljwTWjNV5v2Ubf5xUDB-RzS7HamtMlMuo3993ZUfBWfLpdzfudyD0JXBCecZMWtdk0DK0ha1X0mdcJ5QhOC6REakYKRmDCeHaMRFjyLc8bpKToLocYYk1xkI3QzBW-2qjNbiN7NykZvquvA2xAZGy12LpqaFmwwzoZzdFKpJsDFzxyjj4fZYvIUz18fnyd381hTQbuYZhwvNYa0AkiXolCM9rtgmmWqUqKiNKVMg6BQQVpiIqDQmuesxGWJgZdsjK6H3LV3XxsInazdxtv-pCSc5DTLMyp6lxhc2rsQPFRy7U2r_F4SLA_FyJ9i5KEYWUvOJe012pOXA9l_rn-p2QvBhKeC9Dof9Dp0zv8j9n7AjK2cb9XO-WYpO7VvnK-8stoEyf4K-QbvIY0y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418268627</pqid></control><display><type>article</type><title>Derivative Sign Patterns in Two Dimensions</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis Science and Technology Collection</source><source>ERIC</source><creator>Schilling, Kenneth</creator><creatorcontrib>Schilling, Kenneth</creatorcontrib><description>Given a function defined on a subset of the plane whose partial derivatives never change sign, the signs of the partial derivatives form a two-dimensional pattern. We explore what patterns are possible for various planar domains.</description><identifier>ISSN: 0746-8342</identifier><identifier>EISSN: 1931-1346</identifier><identifier>DOI: 10.4169/college.math.j.44.2.102</identifier><language>eng</language><publisher>Washington: Taylor & Francis</publisher><subject>College Mathematics ; Geometry ; Mathematical analysis ; Mathematical Concepts ; Mathematical functions ; Mathematics Instruction</subject><ispartof>The College mathematics journal, 2013-03, Vol.44 (2), p.102-108</ispartof><rights>Copyright Taylor & Francis</rights><rights>Copyright the Mathematical Association of America 2013</rights><rights>Copyright Mathematical Association Of America Mar 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c272t-2640dc0e5fee5d79a320dc73c36afa7f22523ce72efe5b017e9cc483b0bb0e4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1014571$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Schilling, Kenneth</creatorcontrib><title>Derivative Sign Patterns in Two Dimensions</title><title>The College mathematics journal</title><description>Given a function defined on a subset of the plane whose partial derivatives never change sign, the signs of the partial derivatives form a two-dimensional pattern. We explore what patterns are possible for various planar domains.</description><subject>College Mathematics</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematical Concepts</subject><subject>Mathematical functions</subject><subject>Mathematics Instruction</subject><issn>0746-8342</issn><issn>1931-1346</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNqVkN1LwzAUxYMoOKd_gljwTWjNV5v2Ubf5xUDB-RzS7HamtMlMuo3993ZUfBWfLpdzfudyD0JXBCecZMWtdk0DK0ha1X0mdcJ5QhOC6REakYKRmDCeHaMRFjyLc8bpKToLocYYk1xkI3QzBW-2qjNbiN7NykZvquvA2xAZGy12LpqaFmwwzoZzdFKpJsDFzxyjj4fZYvIUz18fnyd381hTQbuYZhwvNYa0AkiXolCM9rtgmmWqUqKiNKVMg6BQQVpiIqDQmuesxGWJgZdsjK6H3LV3XxsInazdxtv-pCSc5DTLMyp6lxhc2rsQPFRy7U2r_F4SLA_FyJ9i5KEYWUvOJe012pOXA9l_rn-p2QvBhKeC9Dof9Dp0zv8j9n7AjK2cb9XO-WYpO7VvnK-8stoEyf4K-QbvIY0y</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Schilling, Kenneth</creator><general>Taylor & Francis</general><general>Mathematical Association of America</general><general>Taylor & Francis Ltd</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20130301</creationdate><title>Derivative Sign Patterns in Two Dimensions</title><author>Schilling, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-2640dc0e5fee5d79a320dc73c36afa7f22523ce72efe5b017e9cc483b0bb0e4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>College Mathematics</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematical Concepts</topic><topic>Mathematical functions</topic><topic>Mathematics Instruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schilling, Kenneth</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The College mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schilling, Kenneth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1014571</ericid><atitle>Derivative Sign Patterns in Two Dimensions</atitle><jtitle>The College mathematics journal</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>44</volume><issue>2</issue><spage>102</spage><epage>108</epage><pages>102-108</pages><issn>0746-8342</issn><eissn>1931-1346</eissn><abstract>Given a function defined on a subset of the plane whose partial derivatives never change sign, the signs of the partial derivatives form a two-dimensional pattern. We explore what patterns are possible for various planar domains.</abstract><cop>Washington</cop><pub>Taylor & Francis</pub><doi>10.4169/college.math.j.44.2.102</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0746-8342 |
ispartof | The College mathematics journal, 2013-03, Vol.44 (2), p.102-108 |
issn | 0746-8342 1931-1346 |
language | eng |
recordid | cdi_eric_primary_EJ1014571 |
source | JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis Science and Technology Collection; ERIC |
subjects | College Mathematics Geometry Mathematical analysis Mathematical Concepts Mathematical functions Mathematics Instruction |
title | Derivative Sign Patterns in Two Dimensions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivative%20Sign%20Patterns%20in%20Two%20Dimensions&rft.jtitle=The%20College%20mathematics%20journal&rft.au=Schilling,%20Kenneth&rft.date=2013-03-01&rft.volume=44&rft.issue=2&rft.spage=102&rft.epage=108&rft.pages=102-108&rft.issn=0746-8342&rft.eissn=1931-1346&rft_id=info:doi/10.4169/college.math.j.44.2.102&rft_dat=%3Cjstor_eric_%3E10.4169/college.math.j.44.2.102%3C/jstor_eric_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c272t-2640dc0e5fee5d79a320dc73c36afa7f22523ce72efe5b017e9cc483b0bb0e4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1418268627&rft_id=info:pmid/&rft_ericid=EJ1014571&rft_jstor_id=10.4169/college.math.j.44.2.102&rfr_iscdi=true |