Loading…

Automatic Detection of Tutoring Styles Based on Tutors' Behavior

In e-learning systems, tutors have a significant impact on learners' life to increase their knowledge level and to make the learning process more effective. They are characterized by different features. Therefore, identifying tutoring styles is a critical step in understanding the preference of...

Full description

Saved in:
Bibliographic Details
Published in:International journal of distance education technologies 2016-04, Vol.14 (2), p.79-97
Main Authors: Bendjebar, Safia, Lafifi, Yacine, Zedadra, Amina
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c495t-57759ed7b8cbe9fab565bbfa3af66a5b9e6525122ff08677116a6822f4ffb6613
cites
container_end_page 97
container_issue 2
container_start_page 79
container_title International journal of distance education technologies
container_volume 14
creator Bendjebar, Safia
Lafifi, Yacine
Zedadra, Amina
description In e-learning systems, tutors have a significant impact on learners' life to increase their knowledge level and to make the learning process more effective. They are characterized by different features. Therefore, identifying tutoring styles is a critical step in understanding the preference of tutors on how to organize and help the learners. In this context, the authors address the problem of extracting tutoring styles from tutors' behavior. According to this later, tutors are classified automatically into their styles. This technique will be helpful to provide a suitable advice to learners. In the first step, a set of indicators are defined to characterize a tutoring style. In the second one, the accuracy between the tutoring styles obtained from the proposed approach and those defined from a simple questionnaire is investigated. To validate this approach, the authors have collected data from an on line tutoring system (LETline, http://www.labstic.com/letline). They present the results of their analysis and discuss some limitations that can be helpful to the researchers working in the tutoring field.
doi_str_mv 10.4018/IJDET.2016040106
format article
fullrecord <record><control><sourceid>gale_eric_</sourceid><recordid>TN_cdi_eric_primary_EJ1098937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759477746</galeid><ericid>EJ1098937</ericid><sourcerecordid>A759477746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-57759ed7b8cbe9fab565bbfa3af66a5b9e6525122ff08677116a6822f4ffb6613</originalsourceid><addsrcrecordid>eNqNUU1PGzEQXaEilULvvSCt1EO5JHh2_XlrgPAlJA6kZ8vrjFOjzTq1N0j8e0wWJSoSEvLBnnnvzYdfUfwAMqYE5OnN7cV0Nq4IcJJjwveKA2C1GtUA6sv2TcjX4ltKj4RUoGh9UPyerPuwNL235QX2aHsfujK4cpbT0XeL8qF_bjGVZybhvMzYBki_yjP8a558iEfFvjNtwu9v92Hx53I6O78e3d1f3ZxP7kaWKtaPmBBM4Vw00jaonGkYZ03jTG0c54Y1CjmrGFSVc0RyIQC44TKH1LmGc6gPi5Oh7iqGf2tMvV76ZLFtTYdhnTRISYFQyeUnqFVuJhmQTP35jvoY1rHLi-hK1SCVqpjIrPHAWpgWte9c6KOx-cxx6W3o0Pmcn-QNqRCC8iwgg8DGkFJEp1fRL0181kD0q116Y5fe2ZUlx4MEo7db-vQWiJKqfp3hasD9wu-G3Dint87p4PTg3Ed9gO6-579K74l6NXf1CwBhs1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931899257</pqid></control><display><type>article</type><title>Automatic Detection of Tutoring Styles Based on Tutors' Behavior</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>ABI/INFORM Global</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>Library &amp; Information Science Collection</source><source>ERIC</source><source>Education Collection</source><creator>Bendjebar, Safia ; Lafifi, Yacine ; Zedadra, Amina</creator><creatorcontrib>Bendjebar, Safia ; Lafifi, Yacine ; Zedadra, Amina</creatorcontrib><description>In e-learning systems, tutors have a significant impact on learners' life to increase their knowledge level and to make the learning process more effective. They are characterized by different features. Therefore, identifying tutoring styles is a critical step in understanding the preference of tutors on how to organize and help the learners. In this context, the authors address the problem of extracting tutoring styles from tutors' behavior. According to this later, tutors are classified automatically into their styles. This technique will be helpful to provide a suitable advice to learners. In the first step, a set of indicators are defined to characterize a tutoring style. In the second one, the accuracy between the tutoring styles obtained from the proposed approach and those defined from a simple questionnaire is investigated. To validate this approach, the authors have collected data from an on line tutoring system (LETline, http://www.labstic.com/letline). They present the results of their analysis and discuss some limitations that can be helpful to the researchers working in the tutoring field.</description><identifier>ISSN: 1539-3100</identifier><identifier>EISSN: 1539-3119</identifier><identifier>DOI: 10.4018/IJDET.2016040106</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Academic Achievement ; Algeria ; Automation ; Behavior Patterns ; College Students ; Comparative Analysis ; Data Collection ; Distance Education ; Distance learning ; Educational Technology ; Electronic Learning ; Experiments ; Foreign Countries ; Higher Education ; Indicators ; Knowledge Level ; Learning ; Learning Processes ; On-line systems ; Online Courses ; Online education ; Questionnaires ; Surveys ; System effectiveness ; Teaching Methods ; Tutor Training ; Tutorial Programs ; Tutoring ; Tutors ; Tutors and tutoring</subject><ispartof>International journal of distance education technologies, 2016-04, Vol.14 (2), p.79-97</ispartof><rights>COPYRIGHT 2016 IGI Global</rights><rights>Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-57759ed7b8cbe9fab565bbfa3af66a5b9e6525122ff08677116a6822f4ffb6613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2931899257/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2931899257?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11666,21356,21359,21372,27281,27900,27901,31196,33587,33588,33853,33854,33882,33883,34111,36036,36037,43708,43855,43867,44338,74191,74366,74378,74864</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1098937$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Bendjebar, Safia</creatorcontrib><creatorcontrib>Lafifi, Yacine</creatorcontrib><creatorcontrib>Zedadra, Amina</creatorcontrib><title>Automatic Detection of Tutoring Styles Based on Tutors' Behavior</title><title>International journal of distance education technologies</title><description>In e-learning systems, tutors have a significant impact on learners' life to increase their knowledge level and to make the learning process more effective. They are characterized by different features. Therefore, identifying tutoring styles is a critical step in understanding the preference of tutors on how to organize and help the learners. In this context, the authors address the problem of extracting tutoring styles from tutors' behavior. According to this later, tutors are classified automatically into their styles. This technique will be helpful to provide a suitable advice to learners. In the first step, a set of indicators are defined to characterize a tutoring style. In the second one, the accuracy between the tutoring styles obtained from the proposed approach and those defined from a simple questionnaire is investigated. To validate this approach, the authors have collected data from an on line tutoring system (LETline, http://www.labstic.com/letline). They present the results of their analysis and discuss some limitations that can be helpful to the researchers working in the tutoring field.</description><subject>Academic Achievement</subject><subject>Algeria</subject><subject>Automation</subject><subject>Behavior Patterns</subject><subject>College Students</subject><subject>Comparative Analysis</subject><subject>Data Collection</subject><subject>Distance Education</subject><subject>Distance learning</subject><subject>Educational Technology</subject><subject>Electronic Learning</subject><subject>Experiments</subject><subject>Foreign Countries</subject><subject>Higher Education</subject><subject>Indicators</subject><subject>Knowledge Level</subject><subject>Learning</subject><subject>Learning Processes</subject><subject>On-line systems</subject><subject>Online Courses</subject><subject>Online education</subject><subject>Questionnaires</subject><subject>Surveys</subject><subject>System effectiveness</subject><subject>Teaching Methods</subject><subject>Tutor Training</subject><subject>Tutorial Programs</subject><subject>Tutoring</subject><subject>Tutors</subject><subject>Tutors and tutoring</subject><issn>1539-3100</issn><issn>1539-3119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>CNYFK</sourceid><sourceid>F2A</sourceid><sourceid>M0C</sourceid><sourceid>M0P</sourceid><sourceid>M1O</sourceid><recordid>eNqNUU1PGzEQXaEilULvvSCt1EO5JHh2_XlrgPAlJA6kZ8vrjFOjzTq1N0j8e0wWJSoSEvLBnnnvzYdfUfwAMqYE5OnN7cV0Nq4IcJJjwveKA2C1GtUA6sv2TcjX4ltKj4RUoGh9UPyerPuwNL235QX2aHsfujK4cpbT0XeL8qF_bjGVZybhvMzYBki_yjP8a558iEfFvjNtwu9v92Hx53I6O78e3d1f3ZxP7kaWKtaPmBBM4Vw00jaonGkYZ03jTG0c54Y1CjmrGFSVc0RyIQC44TKH1LmGc6gPi5Oh7iqGf2tMvV76ZLFtTYdhnTRISYFQyeUnqFVuJhmQTP35jvoY1rHLi-hK1SCVqpjIrPHAWpgWte9c6KOx-cxx6W3o0Pmcn-QNqRCC8iwgg8DGkFJEp1fRL0181kD0q116Y5fe2ZUlx4MEo7db-vQWiJKqfp3hasD9wu-G3Dint87p4PTg3Ed9gO6-579K74l6NXf1CwBhs1Q</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Bendjebar, Safia</creator><creator>Lafifi, Yacine</creator><creator>Zedadra, Amina</creator><general>IGI Global</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0P</scope><scope>M1O</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRQQA</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160401</creationdate><title>Automatic Detection of Tutoring Styles Based on Tutors' Behavior</title><author>Bendjebar, Safia ; Lafifi, Yacine ; Zedadra, Amina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-57759ed7b8cbe9fab565bbfa3af66a5b9e6525122ff08677116a6822f4ffb6613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Academic Achievement</topic><topic>Algeria</topic><topic>Automation</topic><topic>Behavior Patterns</topic><topic>College Students</topic><topic>Comparative Analysis</topic><topic>Data Collection</topic><topic>Distance Education</topic><topic>Distance learning</topic><topic>Educational Technology</topic><topic>Electronic Learning</topic><topic>Experiments</topic><topic>Foreign Countries</topic><topic>Higher Education</topic><topic>Indicators</topic><topic>Knowledge Level</topic><topic>Learning</topic><topic>Learning Processes</topic><topic>On-line systems</topic><topic>Online Courses</topic><topic>Online education</topic><topic>Questionnaires</topic><topic>Surveys</topic><topic>System effectiveness</topic><topic>Teaching Methods</topic><topic>Tutor Training</topic><topic>Tutorial Programs</topic><topic>Tutoring</topic><topic>Tutors</topic><topic>Tutors and tutoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bendjebar, Safia</creatorcontrib><creatorcontrib>Lafifi, Yacine</creatorcontrib><creatorcontrib>Zedadra, Amina</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Education Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Education Database (ProQuest)</collection><collection>Library Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Social Sciences</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of distance education technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bendjebar, Safia</au><au>Lafifi, Yacine</au><au>Zedadra, Amina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1098937</ericid><atitle>Automatic Detection of Tutoring Styles Based on Tutors' Behavior</atitle><jtitle>International journal of distance education technologies</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>14</volume><issue>2</issue><spage>79</spage><epage>97</epage><pages>79-97</pages><issn>1539-3100</issn><eissn>1539-3119</eissn><abstract>In e-learning systems, tutors have a significant impact on learners' life to increase their knowledge level and to make the learning process more effective. They are characterized by different features. Therefore, identifying tutoring styles is a critical step in understanding the preference of tutors on how to organize and help the learners. In this context, the authors address the problem of extracting tutoring styles from tutors' behavior. According to this later, tutors are classified automatically into their styles. This technique will be helpful to provide a suitable advice to learners. In the first step, a set of indicators are defined to characterize a tutoring style. In the second one, the accuracy between the tutoring styles obtained from the proposed approach and those defined from a simple questionnaire is investigated. To validate this approach, the authors have collected data from an on line tutoring system (LETline, http://www.labstic.com/letline). They present the results of their analysis and discuss some limitations that can be helpful to the researchers working in the tutoring field.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJDET.2016040106</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3100
ispartof International journal of distance education technologies, 2016-04, Vol.14 (2), p.79-97
issn 1539-3100
1539-3119
language eng
recordid cdi_eric_primary_EJ1098937
source Library & Information Science Abstracts (LISA); ABI/INFORM Global; Social Science Premium Collection (Proquest) (PQ_SDU_P3); Library & Information Science Collection; ERIC; Education Collection
subjects Academic Achievement
Algeria
Automation
Behavior Patterns
College Students
Comparative Analysis
Data Collection
Distance Education
Distance learning
Educational Technology
Electronic Learning
Experiments
Foreign Countries
Higher Education
Indicators
Knowledge Level
Learning
Learning Processes
On-line systems
Online Courses
Online education
Questionnaires
Surveys
System effectiveness
Teaching Methods
Tutor Training
Tutorial Programs
Tutoring
Tutors
Tutors and tutoring
title Automatic Detection of Tutoring Styles Based on Tutors' Behavior
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T12%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Detection%20of%20Tutoring%20Styles%20Based%20on%20Tutors'%20Behavior&rft.jtitle=International%20journal%20of%20distance%20education%20technologies&rft.au=Bendjebar,%20Safia&rft.date=2016-04-01&rft.volume=14&rft.issue=2&rft.spage=79&rft.epage=97&rft.pages=79-97&rft.issn=1539-3100&rft.eissn=1539-3119&rft_id=info:doi/10.4018/IJDET.2016040106&rft_dat=%3Cgale_eric_%3EA759477746%3C/gale_eric_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-57759ed7b8cbe9fab565bbfa3af66a5b9e6525122ff08677116a6822f4ffb6613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2931899257&rft_id=info:pmid/&rft_galeid=A759477746&rft_ericid=EJ1098937&rfr_iscdi=true