Loading…
A Note on Testing Perfect Correlations in SEM
This article is concerned with the seemingly simple problem of testing whether latent factors are perfectly correlated (i.e., statistically indistinct). In recent literature, researchers have used different approaches, which are not always correct or complete. We discuss the parameter constraints re...
Saved in:
Published in: | Structural equation modeling 2005-10, Vol.12 (4), p.551-577 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article is concerned with the seemingly simple problem of testing whether latent factors are perfectly correlated (i.e., statistically indistinct). In recent literature, researchers have used different approaches, which are not always correct or complete. We discuss the parameter constraints required to obtain such perfectly correlated latent factors in the context of 4 commonly used models: (a) the oblique factor model, (b) the hierarchical factor model, (c) models in which the factors are predicted by a covariate, and (d) models in which the factors are predictors of a dependent variable. It is shown that the necessary constraints depend on the choice of scaling. We illustrate testing the indistinctiveness of factors with 2 real data examples. |
---|---|
ISSN: | 1070-5511 1532-8007 |
DOI: | 10.1207/s15328007sem1204_3 |