Loading…

Power of Latent Growth Modeling for Detecting Linear Growth: Number of Measurements and Comparison With Other Analytic Approaches

The authors investigated 2 issues concerning the power of latent growth modeling (LGM) in detecting linear growth: the effect of the number of repeated measurements on LGM's power in detecting linear growth and the comparison between LGM and some other approaches in terms of power for detecting...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of experimental education 2005-01, Vol.73 (2), p.121-139
Main Authors: Xitao, Fan, Xiaotao, Fan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The authors investigated 2 issues concerning the power of latent growth modeling (LGM) in detecting linear growth: the effect of the number of repeated measurements on LGM's power in detecting linear growth and the comparison between LGM and some other approaches in terms of power for detecting linear growth. A Monte Carlo simulation design was used, with 3 crossed factors (growth magnitude, number of repeated measurements, and sample size) and 1,000 replications within each cell condition. The major findings were as follows: For 3 repeated measurements, a substantial proportion of samples failed to converge in structural equation modeling; the number of repeated measurements did not show any effect on the statistical power of LGM in detecting linear growth; and the LGM approach outperformed both the dependent t test and repeated-measures analysis of variance (ANOVA) in terms of statistical power for detecting growth under the conditions of small growth magnitude and small to moderate sample size conditions. The multivariate repeated-measures ANOVA approach consistently underperformed the other tests.
ISSN:0022-0973
1940-0683
DOI:10.3200/JEXE.73.2.121-139