Loading…
Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase
All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthe...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2009-04, Vol.106 (15), p.6031-6038 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c591t-ceca7b164a84883f2f52b03dbd1b015ff2180e47e317b8bfbec1d3bba111e9183 |
---|---|
cites | cdi_FETCH-LOGICAL-c591t-ceca7b164a84883f2f52b03dbd1b015ff2180e47e317b8bfbec1d3bba111e9183 |
container_end_page | 6038 |
container_issue | 15 |
container_start_page | 6031 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 106 |
creator | Indiani, Chiara Langston, Lance D Yurieva, Olga Goodman, Myron F O'Donnell, Mike |
description | All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthermore, Pol II and Pol IV freely exchange with the polymerase III (Pol III) replicase on the β-clamp and function with DnaB helicase to form alternative replisomes, even before Pol III stalls at a lesion. DNA damage-induced levels of Pol II and Pol IV dominate the clamp, slowing the helicase and stably maintaining the architecture of the replication machinery while keeping the fork moving. We propose that these dynamic actions provide additional time for normal excision repair of lesions before the replication fork reaches them and also enable the appropriate translesion polymerase to sample each lesion as it is encountered. |
doi_str_mv | 10.1073/pnas.0901403106 |
format | article |
fullrecord | <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201301619733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40482038</jstor_id><sourcerecordid>40482038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-ceca7b164a84883f2f52b03dbd1b015ff2180e47e317b8bfbec1d3bba111e9183</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhzAnICXHZdsZ2EvtSqSqfUgUH2rNlJ5NuKicOdrai_x4vu2rgAieP7Gfesf0w9hLhBKEWp9No0wloQAkCoXrEVgga15XU8JitAHi9VpLLI_YspVsA0KWCp-wINa81B7Fi9iraMXlKfRiL91_Piyn4-4GiTZSKSENoyRfzhnI9-T6FgQo7toX1M8Xf-2kiaovQLVBj5_6Oig3tykTP2ZPO-kQvDusxu_744eri8_ry26cvF-eX66bUOK8bamztsJJWSaVEx7uSOxCta9EBll3HUQHJmgTWTrnOUYOtcM4iImlU4pid7XOnrRuobWico_Vmiv1g470Jtjd_n4z9xtyEO8OrUgotc8DbQ0AMP7aUZjP0qSHv7Uhhm0xVY_41jf8FOXDUCiGDp3uwiSGlSN3DbRDMzp_Z-TOLv9zx-s9HLPxBWAbeHIBd5xJXGSxNlUMy8e7fhOm2Puv7OWf01R69TXOID6wEqfIstQzrbDD2JvbJXH_ngAKwQl0LIX4BGUfDww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20219810</pqid></control><display><type>article</type><title>Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Indiani, Chiara ; Langston, Lance D ; Yurieva, Olga ; Goodman, Myron F ; O'Donnell, Mike</creator><creatorcontrib>Indiani, Chiara ; Langston, Lance D ; Yurieva, Olga ; Goodman, Myron F ; O'Donnell, Mike</creatorcontrib><description>All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthermore, Pol II and Pol IV freely exchange with the polymerase III (Pol III) replicase on the β-clamp and function with DnaB helicase to form alternative replisomes, even before Pol III stalls at a lesion. DNA damage-induced levels of Pol II and Pol IV dominate the clamp, slowing the helicase and stably maintaining the architecture of the replication machinery while keeping the fork moving. We propose that these dynamic actions provide additional time for normal excision repair of lesions before the replication fork reaches them and also enable the appropriate translesion polymerase to sample each lesion as it is encountered.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0901403106</identifier><identifier>PMID: 19279203</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Chromosomes, Bacterial - genetics ; DNA ; DNA damage ; DNA Damage - genetics ; DNA Helicases - genetics ; DNA Helicases - metabolism ; DNA replication ; DNA Replication - genetics ; DNA, Bacterial - biosynthesis ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; DNA-Directed DNA Polymerase - genetics ; DNA-Directed DNA Polymerase - metabolism ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Gels ; Gene expression regulation ; Genes ; Genetic SOS response ; Lesions ; Mutagenesis ; Time Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-04, Vol.106 (15), p.6031-6038</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-ceca7b164a84883f2f52b03dbd1b015ff2180e47e317b8bfbec1d3bba111e9183</citedby><cites>FETCH-LOGICAL-c591t-ceca7b164a84883f2f52b03dbd1b015ff2180e47e317b8bfbec1d3bba111e9183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/15.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40482038$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40482038$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19279203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Indiani, Chiara</creatorcontrib><creatorcontrib>Langston, Lance D</creatorcontrib><creatorcontrib>Yurieva, Olga</creatorcontrib><creatorcontrib>Goodman, Myron F</creatorcontrib><creatorcontrib>O'Donnell, Mike</creatorcontrib><title>Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthermore, Pol II and Pol IV freely exchange with the polymerase III (Pol III) replicase on the β-clamp and function with DnaB helicase to form alternative replisomes, even before Pol III stalls at a lesion. DNA damage-induced levels of Pol II and Pol IV dominate the clamp, slowing the helicase and stably maintaining the architecture of the replication machinery while keeping the fork moving. We propose that these dynamic actions provide additional time for normal excision repair of lesions before the replication fork reaches them and also enable the appropriate translesion polymerase to sample each lesion as it is encountered.</description><subject>Biological Sciences</subject><subject>Chromosomes, Bacterial - genetics</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Damage - genetics</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>DNA replication</subject><subject>DNA Replication - genetics</subject><subject>DNA, Bacterial - biosynthesis</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Gels</subject><subject>Gene expression regulation</subject><subject>Genes</subject><subject>Genetic SOS response</subject><subject>Lesions</subject><subject>Mutagenesis</subject><subject>Time Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EokvhzAnICXHZdsZ2EvtSqSqfUgUH2rNlJ5NuKicOdrai_x4vu2rgAieP7Gfesf0w9hLhBKEWp9No0wloQAkCoXrEVgga15XU8JitAHi9VpLLI_YspVsA0KWCp-wINa81B7Fi9iraMXlKfRiL91_Piyn4-4GiTZSKSENoyRfzhnI9-T6FgQo7toX1M8Xf-2kiaovQLVBj5_6Oig3tykTP2ZPO-kQvDusxu_744eri8_ry26cvF-eX66bUOK8bamztsJJWSaVEx7uSOxCta9EBll3HUQHJmgTWTrnOUYOtcM4iImlU4pid7XOnrRuobWico_Vmiv1g470Jtjd_n4z9xtyEO8OrUgotc8DbQ0AMP7aUZjP0qSHv7Uhhm0xVY_41jf8FOXDUCiGDp3uwiSGlSN3DbRDMzp_Z-TOLv9zx-s9HLPxBWAbeHIBd5xJXGSxNlUMy8e7fhOm2Puv7OWf01R69TXOID6wEqfIstQzrbDD2JvbJXH_ngAKwQl0LIX4BGUfDww</recordid><startdate>20090414</startdate><enddate>20090414</enddate><creator>Indiani, Chiara</creator><creator>Langston, Lance D</creator><creator>Yurieva, Olga</creator><creator>Goodman, Myron F</creator><creator>O'Donnell, Mike</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090414</creationdate><title>Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase</title><author>Indiani, Chiara ; Langston, Lance D ; Yurieva, Olga ; Goodman, Myron F ; O'Donnell, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-ceca7b164a84883f2f52b03dbd1b015ff2180e47e317b8bfbec1d3bba111e9183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological Sciences</topic><topic>Chromosomes, Bacterial - genetics</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Damage - genetics</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>DNA replication</topic><topic>DNA Replication - genetics</topic><topic>DNA, Bacterial - biosynthesis</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Gels</topic><topic>Gene expression regulation</topic><topic>Genes</topic><topic>Genetic SOS response</topic><topic>Lesions</topic><topic>Mutagenesis</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Indiani, Chiara</creatorcontrib><creatorcontrib>Langston, Lance D</creatorcontrib><creatorcontrib>Yurieva, Olga</creatorcontrib><creatorcontrib>Goodman, Myron F</creatorcontrib><creatorcontrib>O'Donnell, Mike</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Indiani, Chiara</au><au>Langston, Lance D</au><au>Yurieva, Olga</au><au>Goodman, Myron F</au><au>O'Donnell, Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-04-14</date><risdate>2009</risdate><volume>106</volume><issue>15</issue><spage>6031</spage><epage>6038</epage><pages>6031-6038</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthermore, Pol II and Pol IV freely exchange with the polymerase III (Pol III) replicase on the β-clamp and function with DnaB helicase to form alternative replisomes, even before Pol III stalls at a lesion. DNA damage-induced levels of Pol II and Pol IV dominate the clamp, slowing the helicase and stably maintaining the architecture of the replication machinery while keeping the fork moving. We propose that these dynamic actions provide additional time for normal excision repair of lesions before the replication fork reaches them and also enable the appropriate translesion polymerase to sample each lesion as it is encountered.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19279203</pmid><doi>10.1073/pnas.0901403106</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2009-04, Vol.106 (15), p.6031-6038 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_fao_agris_US201301619733 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Biological Sciences Chromosomes, Bacterial - genetics DNA DNA damage DNA Damage - genetics DNA Helicases - genetics DNA Helicases - metabolism DNA replication DNA Replication - genetics DNA, Bacterial - biosynthesis DNA, Bacterial - genetics DNA, Bacterial - metabolism DNA-Directed DNA Polymerase - genetics DNA-Directed DNA Polymerase - metabolism Escherichia coli Escherichia coli - enzymology Escherichia coli - genetics Gels Gene expression regulation Genes Genetic SOS response Lesions Mutagenesis Time Factors |
title | Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translesion%20DNA%20polymerases%20remodel%20the%20replisome%20and%20alter%20the%20speed%20of%20the%20replicative%20helicase&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Indiani,%20Chiara&rft.date=2009-04-14&rft.volume=106&rft.issue=15&rft.spage=6031&rft.epage=6038&rft.pages=6031-6038&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0901403106&rft_dat=%3Cjstor_fao_a%3E40482038%3C/jstor_fao_a%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c591t-ceca7b164a84883f2f52b03dbd1b015ff2180e47e317b8bfbec1d3bba111e9183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20219810&rft_id=info:pmid/19279203&rft_jstor_id=40482038&rfr_iscdi=true |