Loading…

Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase

All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthe...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2009-04, Vol.106 (15), p.6031-6038
Main Authors: Indiani, Chiara, Langston, Lance D, Yurieva, Olga, Goodman, Myron F, O'Donnell, Mike
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c591t-ceca7b164a84883f2f52b03dbd1b015ff2180e47e317b8bfbec1d3bba111e9183
cites cdi_FETCH-LOGICAL-c591t-ceca7b164a84883f2f52b03dbd1b015ff2180e47e317b8bfbec1d3bba111e9183
container_end_page 6038
container_issue 15
container_start_page 6031
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 106
creator Indiani, Chiara
Langston, Lance D
Yurieva, Olga
Goodman, Myron F
O'Donnell, Mike
description All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthermore, Pol II and Pol IV freely exchange with the polymerase III (Pol III) replicase on the β-clamp and function with DnaB helicase to form alternative replisomes, even before Pol III stalls at a lesion. DNA damage-induced levels of Pol II and Pol IV dominate the clamp, slowing the helicase and stably maintaining the architecture of the replication machinery while keeping the fork moving. We propose that these dynamic actions provide additional time for normal excision repair of lesions before the replication fork reaches them and also enable the appropriate translesion polymerase to sample each lesion as it is encountered.
doi_str_mv 10.1073/pnas.0901403106
format article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201301619733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40482038</jstor_id><sourcerecordid>40482038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-ceca7b164a84883f2f52b03dbd1b015ff2180e47e317b8bfbec1d3bba111e9183</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhzAnICXHZdsZ2EvtSqSqfUgUH2rNlJ5NuKicOdrai_x4vu2rgAieP7Gfesf0w9hLhBKEWp9No0wloQAkCoXrEVgga15XU8JitAHi9VpLLI_YspVsA0KWCp-wINa81B7Fi9iraMXlKfRiL91_Piyn4-4GiTZSKSENoyRfzhnI9-T6FgQo7toX1M8Xf-2kiaovQLVBj5_6Oig3tykTP2ZPO-kQvDusxu_744eri8_ry26cvF-eX66bUOK8bamztsJJWSaVEx7uSOxCta9EBll3HUQHJmgTWTrnOUYOtcM4iImlU4pid7XOnrRuobWico_Vmiv1g470Jtjd_n4z9xtyEO8OrUgotc8DbQ0AMP7aUZjP0qSHv7Uhhm0xVY_41jf8FOXDUCiGDp3uwiSGlSN3DbRDMzp_Z-TOLv9zx-s9HLPxBWAbeHIBd5xJXGSxNlUMy8e7fhOm2Puv7OWf01R69TXOID6wEqfIstQzrbDD2JvbJXH_ngAKwQl0LIX4BGUfDww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20219810</pqid></control><display><type>article</type><title>Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Indiani, Chiara ; Langston, Lance D ; Yurieva, Olga ; Goodman, Myron F ; O'Donnell, Mike</creator><creatorcontrib>Indiani, Chiara ; Langston, Lance D ; Yurieva, Olga ; Goodman, Myron F ; O'Donnell, Mike</creatorcontrib><description>All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthermore, Pol II and Pol IV freely exchange with the polymerase III (Pol III) replicase on the β-clamp and function with DnaB helicase to form alternative replisomes, even before Pol III stalls at a lesion. DNA damage-induced levels of Pol II and Pol IV dominate the clamp, slowing the helicase and stably maintaining the architecture of the replication machinery while keeping the fork moving. We propose that these dynamic actions provide additional time for normal excision repair of lesions before the replication fork reaches them and also enable the appropriate translesion polymerase to sample each lesion as it is encountered.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0901403106</identifier><identifier>PMID: 19279203</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Chromosomes, Bacterial - genetics ; DNA ; DNA damage ; DNA Damage - genetics ; DNA Helicases - genetics ; DNA Helicases - metabolism ; DNA replication ; DNA Replication - genetics ; DNA, Bacterial - biosynthesis ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; DNA-Directed DNA Polymerase - genetics ; DNA-Directed DNA Polymerase - metabolism ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Gels ; Gene expression regulation ; Genes ; Genetic SOS response ; Lesions ; Mutagenesis ; Time Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-04, Vol.106 (15), p.6031-6038</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-ceca7b164a84883f2f52b03dbd1b015ff2180e47e317b8bfbec1d3bba111e9183</citedby><cites>FETCH-LOGICAL-c591t-ceca7b164a84883f2f52b03dbd1b015ff2180e47e317b8bfbec1d3bba111e9183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/15.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40482038$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40482038$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19279203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Indiani, Chiara</creatorcontrib><creatorcontrib>Langston, Lance D</creatorcontrib><creatorcontrib>Yurieva, Olga</creatorcontrib><creatorcontrib>Goodman, Myron F</creatorcontrib><creatorcontrib>O'Donnell, Mike</creatorcontrib><title>Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthermore, Pol II and Pol IV freely exchange with the polymerase III (Pol III) replicase on the β-clamp and function with DnaB helicase to form alternative replisomes, even before Pol III stalls at a lesion. DNA damage-induced levels of Pol II and Pol IV dominate the clamp, slowing the helicase and stably maintaining the architecture of the replication machinery while keeping the fork moving. We propose that these dynamic actions provide additional time for normal excision repair of lesions before the replication fork reaches them and also enable the appropriate translesion polymerase to sample each lesion as it is encountered.</description><subject>Biological Sciences</subject><subject>Chromosomes, Bacterial - genetics</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Damage - genetics</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>DNA replication</subject><subject>DNA Replication - genetics</subject><subject>DNA, Bacterial - biosynthesis</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Gels</subject><subject>Gene expression regulation</subject><subject>Genes</subject><subject>Genetic SOS response</subject><subject>Lesions</subject><subject>Mutagenesis</subject><subject>Time Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EokvhzAnICXHZdsZ2EvtSqSqfUgUH2rNlJ5NuKicOdrai_x4vu2rgAieP7Gfesf0w9hLhBKEWp9No0wloQAkCoXrEVgga15XU8JitAHi9VpLLI_YspVsA0KWCp-wINa81B7Fi9iraMXlKfRiL91_Piyn4-4GiTZSKSENoyRfzhnI9-T6FgQo7toX1M8Xf-2kiaovQLVBj5_6Oig3tykTP2ZPO-kQvDusxu_744eri8_ry26cvF-eX66bUOK8bamztsJJWSaVEx7uSOxCta9EBll3HUQHJmgTWTrnOUYOtcM4iImlU4pid7XOnrRuobWico_Vmiv1g470Jtjd_n4z9xtyEO8OrUgotc8DbQ0AMP7aUZjP0qSHv7Uhhm0xVY_41jf8FOXDUCiGDp3uwiSGlSN3DbRDMzp_Z-TOLv9zx-s9HLPxBWAbeHIBd5xJXGSxNlUMy8e7fhOm2Puv7OWf01R69TXOID6wEqfIstQzrbDD2JvbJXH_ngAKwQl0LIX4BGUfDww</recordid><startdate>20090414</startdate><enddate>20090414</enddate><creator>Indiani, Chiara</creator><creator>Langston, Lance D</creator><creator>Yurieva, Olga</creator><creator>Goodman, Myron F</creator><creator>O'Donnell, Mike</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090414</creationdate><title>Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase</title><author>Indiani, Chiara ; Langston, Lance D ; Yurieva, Olga ; Goodman, Myron F ; O'Donnell, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-ceca7b164a84883f2f52b03dbd1b015ff2180e47e317b8bfbec1d3bba111e9183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological Sciences</topic><topic>Chromosomes, Bacterial - genetics</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Damage - genetics</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>DNA replication</topic><topic>DNA Replication - genetics</topic><topic>DNA, Bacterial - biosynthesis</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Gels</topic><topic>Gene expression regulation</topic><topic>Genes</topic><topic>Genetic SOS response</topic><topic>Lesions</topic><topic>Mutagenesis</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Indiani, Chiara</creatorcontrib><creatorcontrib>Langston, Lance D</creatorcontrib><creatorcontrib>Yurieva, Olga</creatorcontrib><creatorcontrib>Goodman, Myron F</creatorcontrib><creatorcontrib>O'Donnell, Mike</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Indiani, Chiara</au><au>Langston, Lance D</au><au>Yurieva, Olga</au><au>Goodman, Myron F</au><au>O'Donnell, Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-04-14</date><risdate>2009</risdate><volume>106</volume><issue>15</issue><spage>6031</spage><epage>6038</epage><pages>6031-6038</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthermore, Pol II and Pol IV freely exchange with the polymerase III (Pol III) replicase on the β-clamp and function with DnaB helicase to form alternative replisomes, even before Pol III stalls at a lesion. DNA damage-induced levels of Pol II and Pol IV dominate the clamp, slowing the helicase and stably maintaining the architecture of the replication machinery while keeping the fork moving. We propose that these dynamic actions provide additional time for normal excision repair of lesions before the replication fork reaches them and also enable the appropriate translesion polymerase to sample each lesion as it is encountered.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19279203</pmid><doi>10.1073/pnas.0901403106</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2009-04, Vol.106 (15), p.6031-6038
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US201301619733
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Biological Sciences
Chromosomes, Bacterial - genetics
DNA
DNA damage
DNA Damage - genetics
DNA Helicases - genetics
DNA Helicases - metabolism
DNA replication
DNA Replication - genetics
DNA, Bacterial - biosynthesis
DNA, Bacterial - genetics
DNA, Bacterial - metabolism
DNA-Directed DNA Polymerase - genetics
DNA-Directed DNA Polymerase - metabolism
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - genetics
Gels
Gene expression regulation
Genes
Genetic SOS response
Lesions
Mutagenesis
Time Factors
title Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translesion%20DNA%20polymerases%20remodel%20the%20replisome%20and%20alter%20the%20speed%20of%20the%20replicative%20helicase&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Indiani,%20Chiara&rft.date=2009-04-14&rft.volume=106&rft.issue=15&rft.spage=6031&rft.epage=6038&rft.pages=6031-6038&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0901403106&rft_dat=%3Cjstor_fao_a%3E40482038%3C/jstor_fao_a%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c591t-ceca7b164a84883f2f52b03dbd1b015ff2180e47e317b8bfbec1d3bba111e9183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20219810&rft_id=info:pmid/19279203&rft_jstor_id=40482038&rfr_iscdi=true