Loading…

Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease

To cause rice blast disease, the fungus Magnaporthe oryzae elaborates specialized infection structures called appressoria, which use enormous turgor to rupture the tough outer cuticle of a rice leaf. Here, we report the generation of a set of 22 isogenic M. oryzae mutants each differing by a single...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2009-09, Vol.106 (37), p.15967-15972
Main Authors: Kershaw, Michael J, Talbot, Nicholas J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c554t-9f864a8e363b63f57d5837fc289fbebb15b713ebcf1091250101d07b2777123a3
cites cdi_FETCH-LOGICAL-c554t-9f864a8e363b63f57d5837fc289fbebb15b713ebcf1091250101d07b2777123a3
container_end_page 15972
container_issue 37
container_start_page 15967
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 106
creator Kershaw, Michael J
Talbot, Nicholas J
description To cause rice blast disease, the fungus Magnaporthe oryzae elaborates specialized infection structures called appressoria, which use enormous turgor to rupture the tough outer cuticle of a rice leaf. Here, we report the generation of a set of 22 isogenic M. oryzae mutants each differing by a single component of the predicted autophagic machinery of the fungus. Analysis of this set of targeted deletion mutants demonstrated that loss of any of the 16 genes necessary for nonselective macroautophagy renders the fungus unable to cause rice blast disease, due to impairment of both conidial programmed cell death and appressorium maturation. In contrast, genes necessary only for selective forms of autophagy, such as pexophagy and mitophagy, are dispensable for appressorium-mediated plant infection. A genome-wide analysis therefore demonstrates the importance of infection-associated, nonselective autophagy for the establishment of rice blast disease.
doi_str_mv 10.1073/pnas.0901477106
format article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201301680557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40484831</jstor_id><sourcerecordid>40484831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-9f864a8e363b63f57d5837fc289fbebb15b713ebcf1091250101d07b2777123a3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEokvhzAmwekDikHb8FScXJFRBQarEAXq2nGS861U2XmxnYf_7OuyqC1y42If5vad584riJYVLCopfbUcTL6EBKpSiUD0qFhQaWlaigcfFAoCpshZMnBXPYlwDQCNreFqc0UZRJWS1KHY3OPoNlj9dj8ROY5ecH81ATH720UUScIdmiCStTCJutPibKE2MvnMmYT-rlrNiSn67Mss9yaoRO4zRhD2xPpDgOiTtYGIivYtoIj4vntjsii-O_3lx9-nj9-vP5e3Xmy_XH27LTkqRysbWlTA18oq3FbdS9bLmynasbmyLbUtlqyjHtrNzbCaBAu1BtUzlczBu-Hnx_uC7ndoN9h2OKZhBb4Pb5OW0N07_PRndSi_9TjMlFGMqG7w9GgT_Y8KY9MbFDofBjOinqBmlALKhGbz4B1z7KeQrZibXQ1nNRYauDlAXfIwB7cMmFPRcqJ4L1adCs-L1nwFO_LHBDLw7ArPyZFdprjSVTaW0nYYh4a-UWfIfNiOvDsg6Jh8eGAGiFjWfY745zK3x2iyDi_ruWw7IgVY1SKn4PWFEyho</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201412834</pqid></control><display><type>article</type><title>Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease</title><source>PubMed Central</source><source>JSTOR</source><creator>Kershaw, Michael J ; Talbot, Nicholas J</creator><creatorcontrib>Kershaw, Michael J ; Talbot, Nicholas J</creatorcontrib><description>To cause rice blast disease, the fungus Magnaporthe oryzae elaborates specialized infection structures called appressoria, which use enormous turgor to rupture the tough outer cuticle of a rice leaf. Here, we report the generation of a set of 22 isogenic M. oryzae mutants each differing by a single component of the predicted autophagic machinery of the fungus. Analysis of this set of targeted deletion mutants demonstrated that loss of any of the 16 genes necessary for nonselective macroautophagy renders the fungus unable to cause rice blast disease, due to impairment of both conidial programmed cell death and appressorium maturation. In contrast, genes necessary only for selective forms of autophagy, such as pexophagy and mitophagy, are dispensable for appressorium-mediated plant infection. A genome-wide analysis therefore demonstrates the importance of infection-associated, nonselective autophagy for the establishment of rice blast disease.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0901477106</identifier><identifier>PMID: 19717456</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Apoptosis ; Appressoria ; autophagy ; Autophagy - genetics ; Autophagy - physiology ; Biological Sciences ; blast disease ; Blasts ; Cell death ; Conidia ; Fungi ; Gene Deletion ; Gene expression regulation ; Genes ; Genes, Fungal ; Genome, Fungal ; Genome-Wide Association Study ; Genomics ; Green Fluorescent Proteins - genetics ; Host-Pathogen Interactions - genetics ; Host-Pathogen Interactions - physiology ; host-pathogen relationships ; Infections ; Magnaporthe ; Magnaporthe - genetics ; Magnaporthe - pathogenicity ; Magnaporthe - physiology ; Magnaporthe grisea ; Magnaporthe oryzae ; microbial genetics ; Microscopy, Fluorescence ; mutants ; Mutation ; Oryza - microbiology ; Oryza sativa ; Plant diseases ; Plant Diseases - microbiology ; Recombinant Proteins - genetics ; Rice</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-09, Vol.106 (37), p.15967-15972</ispartof><rights>Copyright National Academy of Sciences Sep 15, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-9f864a8e363b63f57d5837fc289fbebb15b713ebcf1091250101d07b2777123a3</citedby><cites>FETCH-LOGICAL-c554t-9f864a8e363b63f57d5837fc289fbebb15b713ebcf1091250101d07b2777123a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/37.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40484831$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40484831$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19717456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kershaw, Michael J</creatorcontrib><creatorcontrib>Talbot, Nicholas J</creatorcontrib><title>Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>To cause rice blast disease, the fungus Magnaporthe oryzae elaborates specialized infection structures called appressoria, which use enormous turgor to rupture the tough outer cuticle of a rice leaf. Here, we report the generation of a set of 22 isogenic M. oryzae mutants each differing by a single component of the predicted autophagic machinery of the fungus. Analysis of this set of targeted deletion mutants demonstrated that loss of any of the 16 genes necessary for nonselective macroautophagy renders the fungus unable to cause rice blast disease, due to impairment of both conidial programmed cell death and appressorium maturation. In contrast, genes necessary only for selective forms of autophagy, such as pexophagy and mitophagy, are dispensable for appressorium-mediated plant infection. A genome-wide analysis therefore demonstrates the importance of infection-associated, nonselective autophagy for the establishment of rice blast disease.</description><subject>Apoptosis</subject><subject>Appressoria</subject><subject>autophagy</subject><subject>Autophagy - genetics</subject><subject>Autophagy - physiology</subject><subject>Biological Sciences</subject><subject>blast disease</subject><subject>Blasts</subject><subject>Cell death</subject><subject>Conidia</subject><subject>Fungi</subject><subject>Gene Deletion</subject><subject>Gene expression regulation</subject><subject>Genes</subject><subject>Genes, Fungal</subject><subject>Genome, Fungal</subject><subject>Genome-Wide Association Study</subject><subject>Genomics</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Host-Pathogen Interactions - physiology</subject><subject>host-pathogen relationships</subject><subject>Infections</subject><subject>Magnaporthe</subject><subject>Magnaporthe - genetics</subject><subject>Magnaporthe - pathogenicity</subject><subject>Magnaporthe - physiology</subject><subject>Magnaporthe grisea</subject><subject>Magnaporthe oryzae</subject><subject>microbial genetics</subject><subject>Microscopy, Fluorescence</subject><subject>mutants</subject><subject>Mutation</subject><subject>Oryza - microbiology</subject><subject>Oryza sativa</subject><subject>Plant diseases</subject><subject>Plant Diseases - microbiology</subject><subject>Recombinant Proteins - genetics</subject><subject>Rice</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxSMEokvhzAmwekDikHb8FScXJFRBQarEAXq2nGS861U2XmxnYf_7OuyqC1y42If5vad584riJYVLCopfbUcTL6EBKpSiUD0qFhQaWlaigcfFAoCpshZMnBXPYlwDQCNreFqc0UZRJWS1KHY3OPoNlj9dj8ROY5ecH81ATH720UUScIdmiCStTCJutPibKE2MvnMmYT-rlrNiSn67Mss9yaoRO4zRhD2xPpDgOiTtYGIivYtoIj4vntjsii-O_3lx9-nj9-vP5e3Xmy_XH27LTkqRysbWlTA18oq3FbdS9bLmynasbmyLbUtlqyjHtrNzbCaBAu1BtUzlczBu-Hnx_uC7ndoN9h2OKZhBb4Pb5OW0N07_PRndSi_9TjMlFGMqG7w9GgT_Y8KY9MbFDofBjOinqBmlALKhGbz4B1z7KeQrZibXQ1nNRYauDlAXfIwB7cMmFPRcqJ4L1adCs-L1nwFO_LHBDLw7ArPyZFdprjSVTaW0nYYh4a-UWfIfNiOvDsg6Jh8eGAGiFjWfY745zK3x2iyDi_ruWw7IgVY1SKn4PWFEyho</recordid><startdate>20090915</startdate><enddate>20090915</enddate><creator>Kershaw, Michael J</creator><creator>Talbot, Nicholas J</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20090915</creationdate><title>Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease</title><author>Kershaw, Michael J ; Talbot, Nicholas J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-9f864a8e363b63f57d5837fc289fbebb15b713ebcf1091250101d07b2777123a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Apoptosis</topic><topic>Appressoria</topic><topic>autophagy</topic><topic>Autophagy - genetics</topic><topic>Autophagy - physiology</topic><topic>Biological Sciences</topic><topic>blast disease</topic><topic>Blasts</topic><topic>Cell death</topic><topic>Conidia</topic><topic>Fungi</topic><topic>Gene Deletion</topic><topic>Gene expression regulation</topic><topic>Genes</topic><topic>Genes, Fungal</topic><topic>Genome, Fungal</topic><topic>Genome-Wide Association Study</topic><topic>Genomics</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Host-Pathogen Interactions - physiology</topic><topic>host-pathogen relationships</topic><topic>Infections</topic><topic>Magnaporthe</topic><topic>Magnaporthe - genetics</topic><topic>Magnaporthe - pathogenicity</topic><topic>Magnaporthe - physiology</topic><topic>Magnaporthe grisea</topic><topic>Magnaporthe oryzae</topic><topic>microbial genetics</topic><topic>Microscopy, Fluorescence</topic><topic>mutants</topic><topic>Mutation</topic><topic>Oryza - microbiology</topic><topic>Oryza sativa</topic><topic>Plant diseases</topic><topic>Plant Diseases - microbiology</topic><topic>Recombinant Proteins - genetics</topic><topic>Rice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kershaw, Michael J</creatorcontrib><creatorcontrib>Talbot, Nicholas J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kershaw, Michael J</au><au>Talbot, Nicholas J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-09-15</date><risdate>2009</risdate><volume>106</volume><issue>37</issue><spage>15967</spage><epage>15972</epage><pages>15967-15972</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>To cause rice blast disease, the fungus Magnaporthe oryzae elaborates specialized infection structures called appressoria, which use enormous turgor to rupture the tough outer cuticle of a rice leaf. Here, we report the generation of a set of 22 isogenic M. oryzae mutants each differing by a single component of the predicted autophagic machinery of the fungus. Analysis of this set of targeted deletion mutants demonstrated that loss of any of the 16 genes necessary for nonselective macroautophagy renders the fungus unable to cause rice blast disease, due to impairment of both conidial programmed cell death and appressorium maturation. In contrast, genes necessary only for selective forms of autophagy, such as pexophagy and mitophagy, are dispensable for appressorium-mediated plant infection. A genome-wide analysis therefore demonstrates the importance of infection-associated, nonselective autophagy for the establishment of rice blast disease.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19717456</pmid><doi>10.1073/pnas.0901477106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2009-09, Vol.106 (37), p.15967-15972
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US201301680557
source PubMed Central; JSTOR
subjects Apoptosis
Appressoria
autophagy
Autophagy - genetics
Autophagy - physiology
Biological Sciences
blast disease
Blasts
Cell death
Conidia
Fungi
Gene Deletion
Gene expression regulation
Genes
Genes, Fungal
Genome, Fungal
Genome-Wide Association Study
Genomics
Green Fluorescent Proteins - genetics
Host-Pathogen Interactions - genetics
Host-Pathogen Interactions - physiology
host-pathogen relationships
Infections
Magnaporthe
Magnaporthe - genetics
Magnaporthe - pathogenicity
Magnaporthe - physiology
Magnaporthe grisea
Magnaporthe oryzae
microbial genetics
Microscopy, Fluorescence
mutants
Mutation
Oryza - microbiology
Oryza sativa
Plant diseases
Plant Diseases - microbiology
Recombinant Proteins - genetics
Rice
title Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20functional%20analysis%20reveals%20that%20infection-associated%20fungal%20autophagy%20is%20necessary%20for%20rice%20blast%20disease&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kershaw,%20Michael%20J&rft.date=2009-09-15&rft.volume=106&rft.issue=37&rft.spage=15967&rft.epage=15972&rft.pages=15967-15972&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0901477106&rft_dat=%3Cjstor_fao_a%3E40484831%3C/jstor_fao_a%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c554t-9f864a8e363b63f57d5837fc289fbebb15b713ebcf1091250101d07b2777123a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201412834&rft_id=info:pmid/19717456&rft_jstor_id=40484831&rfr_iscdi=true