Loading…

Simultaneous bioconversion of cellulose and hemicellulose to ethanol

Lignocellulosic materials containing cellulose, hemicellulose, and lignin as their main constituents are the most abundant renewable organic resource present on Earth. The conversion of both cellulose and hemicellulose for production of fuel ethanol is being studied intensively with a view to develo...

Full description

Saved in:
Bibliographic Details
Published in:Critical reviews in biotechnology 1998-01, Vol.18 (4), p.295-331
Main Authors: Chandrakant, P, Bisaria, V.S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lignocellulosic materials containing cellulose, hemicellulose, and lignin as their main constituents are the most abundant renewable organic resource present on Earth. The conversion of both cellulose and hemicellulose for production of fuel ethanol is being studied intensively with a view to develop a technically and economically viable bioprocess. The fermentation of glucose, the main constituent of cellulose hydrolyzate, to ethanol can be carried out efficiently. On the other hand, although bioconversion of xylose, the main pentose sugar obtained on hydrolysis of hemicellulose, to ethanol presents a biochemical challenge, especially if it is present along with glucose, it needs to be fermented to make the biomass-to-ethanol process economical. A lot of attention therefore has been focussed on the utilization of both glucose and xylose to ethanol. Accordingly, while describing the advancements that have taken place to get xylose converted efficiently to ethanol by xylose-fermenting organisms, the review deals mainly with the strategies that have been put forward for bioconversion of both the sugars to achieve high ethanol concentration, yield, and productivity. The approaches, which include the use of (1) xylose-fermenting yeasts alone, (2) xylose isomerase enzyme as well as yeast, (3) immobilized enzymes and cells, and (4) sequential fermentation and co-culture process are described with respect to their underlying concepts and major limitations. Genetic improvements in the cultures have been made either to enlarge the range of substrate utilization or to channel metabolic intermediates specifically toward ethanol. These contributions represent real significant advancements in the field and have also been adequately dealt with from the point of view of their impact on utilization of both cellulose and hemicellulose sugars to ethanol.
ISSN:0738-8551
1549-7801
DOI:10.1080/0738-859891224185