Loading…
Deciphering groundwater flow between the Complex Terminal and Plio-Quaternary aquifers in Chott Gharsa plain (southwestern Tunisia) using isotopic and chemical tools
The Complex Terminal (CT) and Plio-Quaternary (P-Q) aquifers in the Chott Gharsa plain in southwestern Tunisia have been investigated with the aid of chemical and isotopic tools. It has been demonstrated that groundwater from the CT is mainly of palaeo-origin, especially in the western and central p...
Saved in:
Published in: | Hydrological sciences journal 2012-07, Vol.57 (5), p.967-984 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Complex Terminal (CT) and Plio-Quaternary (P-Q) aquifers in the Chott Gharsa plain in southwestern Tunisia have been investigated with the aid of chemical and isotopic tools. It has been demonstrated that groundwater from the CT is mainly of palaeo-origin, especially in the western and central parts of the plain where the most negative values of δ¹⁸O and δ²H were observed (between −8.1 and −7.6‰ for δ¹⁸O, and −60 to −57‰ for δ²H), combined with low concentrations of radiocarbon (6.8–7.5 pmc) and absence of tritium. Modern recharge of the aquifer occurs only in the eastern part of the system where younger waters were observed, as indicated by their stable isotope composition, relatively high radiocarbon content and presence of tritium. Groundwater from the P-Q multi-layer aquifer represents mixtures of ascending deep CT waters and modern water recharging the P-Q aquifer system. Isotope mass balance was used to quantify mixing proportions. The calculations showed that the contribution of deep CT groundwater to the P-Q aquifer system reaches about 75% in the western and central parts of the plain where the CT aquifer remains strongly artesian. This contribution decreases to about 15% towards the eastern part of the plain, as a consequence of significant reduction of artesian pressure in this area of the CT aquifer. Chemical data suggest that mineralization of the studied groundwater systems is controlled mainly by dissolution of evaporative minerals (halite, anhydrite and gypsum) and cation exchange reactions with the matrix, possibly enhanced by recent anthropogenic disturbance of the system caused by lowering of the water table due to heavy exploitation and return flow of saline irrigation water into the P-Q aquifer.Editor D. Koutsoyiannis; Associate editor E. CustodioCitation Yangui, H., Abidi, I., Zouari, K., and Rozanski, K., 2012. Deciphering groundwater flow between the Complex Terminal and Plio-Quaternary aquifers in Chott Gharsa plain (southwestern Tunisia) using isotopic and chemical tools. Hydrological Sciences Journal, 57 (5), 967–984. |
---|---|
ISSN: | 2150-3435 0262-6667 2150-3435 |
DOI: | 10.1080/02626667.2012.689110 |