Loading…
Characterising the diameter distribution of Sal plantations by comparing normal, lognormal and Weibull distributions at Tilagarh Eco-park, Bangladesh
For many years foresters have been using statistical probability density functions to describe and characterise stand structure. Predicting the current and future yields of a stand is essential for successful stand and timber management. Implicit prediction of current yield is accomplished by using...
Saved in:
Published in: | Southern forests 2014-10, Vol.76 (4), p.201-208 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For many years foresters have been using statistical probability density functions to describe and characterise stand structure. Predicting the current and future yields of a stand is essential for successful stand and timber management. Implicit prediction of current yield is accomplished by using diameter distribution methods. All diameter distribution yield systems predict the number of trees per unit area by diameter class. In this study, the normal, lognormal and the three-parameter Weibull probability density function were compared to characterise the diameter distributions of Sal (Shorea robusta) plantations grown at Tilagarh Eco-park, Bangladesh. Data from 70 plots, established in three plantations, were used for this study. The Weibull parameters were estimated by the maximum likelihood and moments estimator methods. A one-sample Kolmogorov–Smirnov test was used for the goodness of fit for all models. The Kolmogorov–Smirnov test results showed that both lognormal and Weibull distributions were suitable to characterise the diameter distributions of Sal plantations in the study area and may be applicable for other Sal forests in Bangladesh. |
---|---|
ISSN: | 2070-2639 2070-2620 2070-2639 |
DOI: | 10.2989/20702620.2014.947077 |