Loading…

Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps

The type of metabolic compartmentalization that occurs in red blood cells differs from the types that exist in most eukaryotic cells, such as intracellular organelles. In red blood cells (ghosts), ATP is sequestered within the cytoskeletal–membrane complex. These pools of ATP are known to directly f...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2012-07, Vol.109 (31), p.12794-12799
Main Authors: Chu, Haiyan, Puchulu-Campanella, Estela, Galan, Jacob A, Tao, W. Andy, Low, Philip S, Hoffman, Joseph F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c492t-5d7313135bf7b8c49ab48811cf7707b27775ae35ddf4a00f68a9ae7456c978a83
cites cdi_FETCH-LOGICAL-c492t-5d7313135bf7b8c49ab48811cf7707b27775ae35ddf4a00f68a9ae7456c978a83
container_end_page 12799
container_issue 31
container_start_page 12794
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Chu, Haiyan
Puchulu-Campanella, Estela
Galan, Jacob A
Tao, W. Andy
Low, Philip S
Hoffman, Joseph F
description The type of metabolic compartmentalization that occurs in red blood cells differs from the types that exist in most eukaryotic cells, such as intracellular organelles. In red blood cells (ghosts), ATP is sequestered within the cytoskeletal–membrane complex. These pools of ATP are known to directly fuel both the Na ⁺/K ⁺ and Ca ²⁺ pumps. ATP can be entrapped within these pools either by incubation with bulk ATP or by operation of the phosphoglycerate kinase and pyruvate kinase reactions to enzymatically generate ATP. When the pool is filled with nascent ATP, metabolic labeling of the Na ⁺/K ⁺ or Ca ²⁺ pump phosphoproteins (E Nₐ-P and E Cₐ-P, respectively) from bulk [γ- ³²P]-ATP is prevented until the pool is emptied by various means. Importantly, the pool also can be filled with the fluorescent ATP analog trinitrophenol ATP, as well as with a photoactivatable ATP analog, 8-azido-ATP (N ₃-ATP). Using the fluorescent ATP, we show that ATP accumulates and then disappears from the membrane as the ATP pools are filled and subsequently emptied, respectively. By loading N ₃-ATP into the membrane pool, we demonstrate that membrane proteins that contribute to the pool’s architecture can be photolabeled. With the aid of an antibody to N ₃-ATP, we identify these labeled proteins by immunoblotting and characterize their derived peptides by mass spectrometry. These analyses show that the specific peptides that corral the entrapped ATP derive from sequences within β-spectrin, ankyrin, band 3, and GAPDH.
doi_str_mv 10.1073/pnas.1209014109
format article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201600129273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41685477</jstor_id><sourcerecordid>41685477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-5d7313135bf7b8c49ab48811cf7707b27775ae35ddf4a00f68a9ae7456c978a83</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EotvCmRNgqRcu246_YvuCVFV8VKoEEu3ZchJnN4sTB9tB6r_HYZctIEse2fPMq3lnEHpF4IKAZJfTaNMFoaCBcAL6CVqVm6wrruEpWgFQuVac8hN0mtIOALRQ8BydUCq5IEKtUL5p3Zj7rm9s7sOIQ4ebhxzSd-ddth6XMBQgYTc2PqR-3OC8dfjq7iueQvCpvGzG3ew83s6DHXF0La59CC1unPd4cEMd7ejwQX-ahym9QM8665N7eYhn6P7jh7vrz-vbL59urq9u1w3XNK9FKxkpR9SdrFX5szVXipCmkxJkTaWUwjom2rbjFqCrlNXWFWdVo6Wyip2h93vdaa4H1zbFSLTeTLEfbHwwwfbm38zYb80m_DSMl5kSXQTeHQRi-DG7lM3Qp8VXcRTmZAgwUFIwqAp6_h-6C3Mci73flCQVFUtHl3uqiSGl6LpjMwTMslGzbNQ8brRUvPnbw5H_s8IC4AOwVD7KacNIEZKaF-T1HtmlHOKR4aRSgktZ8m_3-c4GYzexT-b-WxlABUCoppKxXzP9u0I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030716258</pqid></control><display><type>article</type><title>Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Chu, Haiyan ; Puchulu-Campanella, Estela ; Galan, Jacob A ; Tao, W. Andy ; Low, Philip S ; Hoffman, Joseph F</creator><creatorcontrib>Chu, Haiyan ; Puchulu-Campanella, Estela ; Galan, Jacob A ; Tao, W. Andy ; Low, Philip S ; Hoffman, Joseph F</creatorcontrib><description>The type of metabolic compartmentalization that occurs in red blood cells differs from the types that exist in most eukaryotic cells, such as intracellular organelles. In red blood cells (ghosts), ATP is sequestered within the cytoskeletal–membrane complex. These pools of ATP are known to directly fuel both the Na ⁺/K ⁺ and Ca ²⁺ pumps. ATP can be entrapped within these pools either by incubation with bulk ATP or by operation of the phosphoglycerate kinase and pyruvate kinase reactions to enzymatically generate ATP. When the pool is filled with nascent ATP, metabolic labeling of the Na ⁺/K ⁺ or Ca ²⁺ pump phosphoproteins (E Nₐ-P and E Cₐ-P, respectively) from bulk [γ- ³²P]-ATP is prevented until the pool is emptied by various means. Importantly, the pool also can be filled with the fluorescent ATP analog trinitrophenol ATP, as well as with a photoactivatable ATP analog, 8-azido-ATP (N ₃-ATP). Using the fluorescent ATP, we show that ATP accumulates and then disappears from the membrane as the ATP pools are filled and subsequently emptied, respectively. By loading N ₃-ATP into the membrane pool, we demonstrate that membrane proteins that contribute to the pool’s architecture can be photolabeled. With the aid of an antibody to N ₃-ATP, we identify these labeled proteins by immunoblotting and characterize their derived peptides by mass spectrometry. These analyses show that the specific peptides that corral the entrapped ATP derive from sequences within β-spectrin, ankyrin, band 3, and GAPDH.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1209014109</identifier><identifier>PMID: 22745158</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actins ; Adenosine triphosphatase ; adenosine triphosphate ; Adenosine Triphosphate - analogs &amp; derivatives ; Adenosine Triphosphate - metabolism ; Adenosine Triphosphate - pharmacology ; Anion Exchange Protein 1, Erythrocyte - metabolism ; Ankyrins ; Ankyrins - metabolism ; Antibodies ; Antibodies - chemistry ; Antibodies - pharmacology ; Azides - metabolism ; Azides - pharmacology ; Biological Sciences ; calcium ; Calcium Channels - metabolism ; cation pumps ; Cell membranes ; Cytoskeleton ; Cytoskeleton - metabolism ; Energy metabolism ; Enzymes ; Erythrocyte membrane ; Erythrocyte Membrane - metabolism ; Erythrocytes ; eukaryotic cells ; fluorescence ; Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism ; Humans ; immunoblotting ; Kinases ; Mass spectrometry ; Membranes ; organelles ; P branes ; Peptides ; phosphoglycerate kinase ; phosphoproteins ; Physical Sciences ; Pumps ; pyruvate kinase ; sodium ; Sodium-Potassium-Exchanging ATPase - metabolism ; Spectrin - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (31), p.12794-12799</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 31, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-5d7313135bf7b8c49ab48811cf7707b27775ae35ddf4a00f68a9ae7456c978a83</citedby><cites>FETCH-LOGICAL-c492t-5d7313135bf7b8c49ab48811cf7707b27775ae35ddf4a00f68a9ae7456c978a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/31.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41685477$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41685477$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22745158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Haiyan</creatorcontrib><creatorcontrib>Puchulu-Campanella, Estela</creatorcontrib><creatorcontrib>Galan, Jacob A</creatorcontrib><creatorcontrib>Tao, W. Andy</creatorcontrib><creatorcontrib>Low, Philip S</creatorcontrib><creatorcontrib>Hoffman, Joseph F</creatorcontrib><title>Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The type of metabolic compartmentalization that occurs in red blood cells differs from the types that exist in most eukaryotic cells, such as intracellular organelles. In red blood cells (ghosts), ATP is sequestered within the cytoskeletal–membrane complex. These pools of ATP are known to directly fuel both the Na ⁺/K ⁺ and Ca ²⁺ pumps. ATP can be entrapped within these pools either by incubation with bulk ATP or by operation of the phosphoglycerate kinase and pyruvate kinase reactions to enzymatically generate ATP. When the pool is filled with nascent ATP, metabolic labeling of the Na ⁺/K ⁺ or Ca ²⁺ pump phosphoproteins (E Nₐ-P and E Cₐ-P, respectively) from bulk [γ- ³²P]-ATP is prevented until the pool is emptied by various means. Importantly, the pool also can be filled with the fluorescent ATP analog trinitrophenol ATP, as well as with a photoactivatable ATP analog, 8-azido-ATP (N ₃-ATP). Using the fluorescent ATP, we show that ATP accumulates and then disappears from the membrane as the ATP pools are filled and subsequently emptied, respectively. By loading N ₃-ATP into the membrane pool, we demonstrate that membrane proteins that contribute to the pool’s architecture can be photolabeled. With the aid of an antibody to N ₃-ATP, we identify these labeled proteins by immunoblotting and characterize their derived peptides by mass spectrometry. These analyses show that the specific peptides that corral the entrapped ATP derive from sequences within β-spectrin, ankyrin, band 3, and GAPDH.</description><subject>Actins</subject><subject>Adenosine triphosphatase</subject><subject>adenosine triphosphate</subject><subject>Adenosine Triphosphate - analogs &amp; derivatives</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Adenosine Triphosphate - pharmacology</subject><subject>Anion Exchange Protein 1, Erythrocyte - metabolism</subject><subject>Ankyrins</subject><subject>Ankyrins - metabolism</subject><subject>Antibodies</subject><subject>Antibodies - chemistry</subject><subject>Antibodies - pharmacology</subject><subject>Azides - metabolism</subject><subject>Azides - pharmacology</subject><subject>Biological Sciences</subject><subject>calcium</subject><subject>Calcium Channels - metabolism</subject><subject>cation pumps</subject><subject>Cell membranes</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>Energy metabolism</subject><subject>Enzymes</subject><subject>Erythrocyte membrane</subject><subject>Erythrocyte Membrane - metabolism</subject><subject>Erythrocytes</subject><subject>eukaryotic cells</subject><subject>fluorescence</subject><subject>Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism</subject><subject>Humans</subject><subject>immunoblotting</subject><subject>Kinases</subject><subject>Mass spectrometry</subject><subject>Membranes</subject><subject>organelles</subject><subject>P branes</subject><subject>Peptides</subject><subject>phosphoglycerate kinase</subject><subject>phosphoproteins</subject><subject>Physical Sciences</subject><subject>Pumps</subject><subject>pyruvate kinase</subject><subject>sodium</subject><subject>Sodium-Potassium-Exchanging ATPase - metabolism</subject><subject>Spectrin - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi0EotvCmRNgqRcu246_YvuCVFV8VKoEEu3ZchJnN4sTB9tB6r_HYZctIEse2fPMq3lnEHpF4IKAZJfTaNMFoaCBcAL6CVqVm6wrruEpWgFQuVac8hN0mtIOALRQ8BydUCq5IEKtUL5p3Zj7rm9s7sOIQ4ebhxzSd-ddth6XMBQgYTc2PqR-3OC8dfjq7iueQvCpvGzG3ew83s6DHXF0La59CC1unPd4cEMd7ejwQX-ahym9QM8665N7eYhn6P7jh7vrz-vbL59urq9u1w3XNK9FKxkpR9SdrFX5szVXipCmkxJkTaWUwjom2rbjFqCrlNXWFWdVo6Wyip2h93vdaa4H1zbFSLTeTLEfbHwwwfbm38zYb80m_DSMl5kSXQTeHQRi-DG7lM3Qp8VXcRTmZAgwUFIwqAp6_h-6C3Mci73flCQVFUtHl3uqiSGl6LpjMwTMslGzbNQ8brRUvPnbw5H_s8IC4AOwVD7KacNIEZKaF-T1HtmlHOKR4aRSgktZ8m_3-c4GYzexT-b-WxlABUCoppKxXzP9u0I</recordid><startdate>20120731</startdate><enddate>20120731</enddate><creator>Chu, Haiyan</creator><creator>Puchulu-Campanella, Estela</creator><creator>Galan, Jacob A</creator><creator>Tao, W. Andy</creator><creator>Low, Philip S</creator><creator>Hoffman, Joseph F</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120731</creationdate><title>Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps</title><author>Chu, Haiyan ; Puchulu-Campanella, Estela ; Galan, Jacob A ; Tao, W. Andy ; Low, Philip S ; Hoffman, Joseph F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-5d7313135bf7b8c49ab48811cf7707b27775ae35ddf4a00f68a9ae7456c978a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Actins</topic><topic>Adenosine triphosphatase</topic><topic>adenosine triphosphate</topic><topic>Adenosine Triphosphate - analogs &amp; derivatives</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Adenosine Triphosphate - pharmacology</topic><topic>Anion Exchange Protein 1, Erythrocyte - metabolism</topic><topic>Ankyrins</topic><topic>Ankyrins - metabolism</topic><topic>Antibodies</topic><topic>Antibodies - chemistry</topic><topic>Antibodies - pharmacology</topic><topic>Azides - metabolism</topic><topic>Azides - pharmacology</topic><topic>Biological Sciences</topic><topic>calcium</topic><topic>Calcium Channels - metabolism</topic><topic>cation pumps</topic><topic>Cell membranes</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>Energy metabolism</topic><topic>Enzymes</topic><topic>Erythrocyte membrane</topic><topic>Erythrocyte Membrane - metabolism</topic><topic>Erythrocytes</topic><topic>eukaryotic cells</topic><topic>fluorescence</topic><topic>Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism</topic><topic>Humans</topic><topic>immunoblotting</topic><topic>Kinases</topic><topic>Mass spectrometry</topic><topic>Membranes</topic><topic>organelles</topic><topic>P branes</topic><topic>Peptides</topic><topic>phosphoglycerate kinase</topic><topic>phosphoproteins</topic><topic>Physical Sciences</topic><topic>Pumps</topic><topic>pyruvate kinase</topic><topic>sodium</topic><topic>Sodium-Potassium-Exchanging ATPase - metabolism</topic><topic>Spectrin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Haiyan</creatorcontrib><creatorcontrib>Puchulu-Campanella, Estela</creatorcontrib><creatorcontrib>Galan, Jacob A</creatorcontrib><creatorcontrib>Tao, W. Andy</creatorcontrib><creatorcontrib>Low, Philip S</creatorcontrib><creatorcontrib>Hoffman, Joseph F</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Haiyan</au><au>Puchulu-Campanella, Estela</au><au>Galan, Jacob A</au><au>Tao, W. Andy</au><au>Low, Philip S</au><au>Hoffman, Joseph F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-07-31</date><risdate>2012</risdate><volume>109</volume><issue>31</issue><spage>12794</spage><epage>12799</epage><pages>12794-12799</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The type of metabolic compartmentalization that occurs in red blood cells differs from the types that exist in most eukaryotic cells, such as intracellular organelles. In red blood cells (ghosts), ATP is sequestered within the cytoskeletal–membrane complex. These pools of ATP are known to directly fuel both the Na ⁺/K ⁺ and Ca ²⁺ pumps. ATP can be entrapped within these pools either by incubation with bulk ATP or by operation of the phosphoglycerate kinase and pyruvate kinase reactions to enzymatically generate ATP. When the pool is filled with nascent ATP, metabolic labeling of the Na ⁺/K ⁺ or Ca ²⁺ pump phosphoproteins (E Nₐ-P and E Cₐ-P, respectively) from bulk [γ- ³²P]-ATP is prevented until the pool is emptied by various means. Importantly, the pool also can be filled with the fluorescent ATP analog trinitrophenol ATP, as well as with a photoactivatable ATP analog, 8-azido-ATP (N ₃-ATP). Using the fluorescent ATP, we show that ATP accumulates and then disappears from the membrane as the ATP pools are filled and subsequently emptied, respectively. By loading N ₃-ATP into the membrane pool, we demonstrate that membrane proteins that contribute to the pool’s architecture can be photolabeled. With the aid of an antibody to N ₃-ATP, we identify these labeled proteins by immunoblotting and characterize their derived peptides by mass spectrometry. These analyses show that the specific peptides that corral the entrapped ATP derive from sequences within β-spectrin, ankyrin, band 3, and GAPDH.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22745158</pmid><doi>10.1073/pnas.1209014109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (31), p.12794-12799
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US201600129273
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Actins
Adenosine triphosphatase
adenosine triphosphate
Adenosine Triphosphate - analogs & derivatives
Adenosine Triphosphate - metabolism
Adenosine Triphosphate - pharmacology
Anion Exchange Protein 1, Erythrocyte - metabolism
Ankyrins
Ankyrins - metabolism
Antibodies
Antibodies - chemistry
Antibodies - pharmacology
Azides - metabolism
Azides - pharmacology
Biological Sciences
calcium
Calcium Channels - metabolism
cation pumps
Cell membranes
Cytoskeleton
Cytoskeleton - metabolism
Energy metabolism
Enzymes
Erythrocyte membrane
Erythrocyte Membrane - metabolism
Erythrocytes
eukaryotic cells
fluorescence
Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism
Humans
immunoblotting
Kinases
Mass spectrometry
Membranes
organelles
P branes
Peptides
phosphoglycerate kinase
phosphoproteins
Physical Sciences
Pumps
pyruvate kinase
sodium
Sodium-Potassium-Exchanging ATPase - metabolism
Spectrin - metabolism
title Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20cytoskeletal%20elements%20enclosing%20the%20ATP%20pools%20that%20fuel%20human%20red%20blood%20cell%20membrane%20cation%20pumps&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chu,%20Haiyan&rft.date=2012-07-31&rft.volume=109&rft.issue=31&rft.spage=12794&rft.epage=12799&rft.pages=12794-12799&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1209014109&rft_dat=%3Cjstor_fao_a%3E41685477%3C/jstor_fao_a%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-5d7313135bf7b8c49ab48811cf7707b27775ae35ddf4a00f68a9ae7456c978a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030716258&rft_id=info:pmid/22745158&rft_jstor_id=41685477&rfr_iscdi=true