Loading…
Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps
The type of metabolic compartmentalization that occurs in red blood cells differs from the types that exist in most eukaryotic cells, such as intracellular organelles. In red blood cells (ghosts), ATP is sequestered within the cytoskeletal–membrane complex. These pools of ATP are known to directly f...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2012-07, Vol.109 (31), p.12794-12799 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c492t-5d7313135bf7b8c49ab48811cf7707b27775ae35ddf4a00f68a9ae7456c978a83 |
---|---|
cites | cdi_FETCH-LOGICAL-c492t-5d7313135bf7b8c49ab48811cf7707b27775ae35ddf4a00f68a9ae7456c978a83 |
container_end_page | 12799 |
container_issue | 31 |
container_start_page | 12794 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Chu, Haiyan Puchulu-Campanella, Estela Galan, Jacob A Tao, W. Andy Low, Philip S Hoffman, Joseph F |
description | The type of metabolic compartmentalization that occurs in red blood cells differs from the types that exist in most eukaryotic cells, such as intracellular organelles. In red blood cells (ghosts), ATP is sequestered within the cytoskeletal–membrane complex. These pools of ATP are known to directly fuel both the Na ⁺/K ⁺ and Ca ²⁺ pumps. ATP can be entrapped within these pools either by incubation with bulk ATP or by operation of the phosphoglycerate kinase and pyruvate kinase reactions to enzymatically generate ATP. When the pool is filled with nascent ATP, metabolic labeling of the Na ⁺/K ⁺ or Ca ²⁺ pump phosphoproteins (E Nₐ-P and E Cₐ-P, respectively) from bulk [γ- ³²P]-ATP is prevented until the pool is emptied by various means. Importantly, the pool also can be filled with the fluorescent ATP analog trinitrophenol ATP, as well as with a photoactivatable ATP analog, 8-azido-ATP (N ₃-ATP). Using the fluorescent ATP, we show that ATP accumulates and then disappears from the membrane as the ATP pools are filled and subsequently emptied, respectively. By loading N ₃-ATP into the membrane pool, we demonstrate that membrane proteins that contribute to the pool’s architecture can be photolabeled. With the aid of an antibody to N ₃-ATP, we identify these labeled proteins by immunoblotting and characterize their derived peptides by mass spectrometry. These analyses show that the specific peptides that corral the entrapped ATP derive from sequences within β-spectrin, ankyrin, band 3, and GAPDH. |
doi_str_mv | 10.1073/pnas.1209014109 |
format | article |
fullrecord | <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201600129273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41685477</jstor_id><sourcerecordid>41685477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-5d7313135bf7b8c49ab48811cf7707b27775ae35ddf4a00f68a9ae7456c978a83</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EotvCmRNgqRcu246_YvuCVFV8VKoEEu3ZchJnN4sTB9tB6r_HYZctIEse2fPMq3lnEHpF4IKAZJfTaNMFoaCBcAL6CVqVm6wrruEpWgFQuVac8hN0mtIOALRQ8BydUCq5IEKtUL5p3Zj7rm9s7sOIQ4ebhxzSd-ddth6XMBQgYTc2PqR-3OC8dfjq7iueQvCpvGzG3ew83s6DHXF0La59CC1unPd4cEMd7ejwQX-ahym9QM8665N7eYhn6P7jh7vrz-vbL59urq9u1w3XNK9FKxkpR9SdrFX5szVXipCmkxJkTaWUwjom2rbjFqCrlNXWFWdVo6Wyip2h93vdaa4H1zbFSLTeTLEfbHwwwfbm38zYb80m_DSMl5kSXQTeHQRi-DG7lM3Qp8VXcRTmZAgwUFIwqAp6_h-6C3Mci73flCQVFUtHl3uqiSGl6LpjMwTMslGzbNQ8brRUvPnbw5H_s8IC4AOwVD7KacNIEZKaF-T1HtmlHOKR4aRSgktZ8m_3-c4GYzexT-b-WxlABUCoppKxXzP9u0I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030716258</pqid></control><display><type>article</type><title>Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Chu, Haiyan ; Puchulu-Campanella, Estela ; Galan, Jacob A ; Tao, W. Andy ; Low, Philip S ; Hoffman, Joseph F</creator><creatorcontrib>Chu, Haiyan ; Puchulu-Campanella, Estela ; Galan, Jacob A ; Tao, W. Andy ; Low, Philip S ; Hoffman, Joseph F</creatorcontrib><description>The type of metabolic compartmentalization that occurs in red blood cells differs from the types that exist in most eukaryotic cells, such as intracellular organelles. In red blood cells (ghosts), ATP is sequestered within the cytoskeletal–membrane complex. These pools of ATP are known to directly fuel both the Na ⁺/K ⁺ and Ca ²⁺ pumps. ATP can be entrapped within these pools either by incubation with bulk ATP or by operation of the phosphoglycerate kinase and pyruvate kinase reactions to enzymatically generate ATP. When the pool is filled with nascent ATP, metabolic labeling of the Na ⁺/K ⁺ or Ca ²⁺ pump phosphoproteins (E Nₐ-P and E Cₐ-P, respectively) from bulk [γ- ³²P]-ATP is prevented until the pool is emptied by various means. Importantly, the pool also can be filled with the fluorescent ATP analog trinitrophenol ATP, as well as with a photoactivatable ATP analog, 8-azido-ATP (N ₃-ATP). Using the fluorescent ATP, we show that ATP accumulates and then disappears from the membrane as the ATP pools are filled and subsequently emptied, respectively. By loading N ₃-ATP into the membrane pool, we demonstrate that membrane proteins that contribute to the pool’s architecture can be photolabeled. With the aid of an antibody to N ₃-ATP, we identify these labeled proteins by immunoblotting and characterize their derived peptides by mass spectrometry. These analyses show that the specific peptides that corral the entrapped ATP derive from sequences within β-spectrin, ankyrin, band 3, and GAPDH.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1209014109</identifier><identifier>PMID: 22745158</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actins ; Adenosine triphosphatase ; adenosine triphosphate ; Adenosine Triphosphate - analogs & derivatives ; Adenosine Triphosphate - metabolism ; Adenosine Triphosphate - pharmacology ; Anion Exchange Protein 1, Erythrocyte - metabolism ; Ankyrins ; Ankyrins - metabolism ; Antibodies ; Antibodies - chemistry ; Antibodies - pharmacology ; Azides - metabolism ; Azides - pharmacology ; Biological Sciences ; calcium ; Calcium Channels - metabolism ; cation pumps ; Cell membranes ; Cytoskeleton ; Cytoskeleton - metabolism ; Energy metabolism ; Enzymes ; Erythrocyte membrane ; Erythrocyte Membrane - metabolism ; Erythrocytes ; eukaryotic cells ; fluorescence ; Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism ; Humans ; immunoblotting ; Kinases ; Mass spectrometry ; Membranes ; organelles ; P branes ; Peptides ; phosphoglycerate kinase ; phosphoproteins ; Physical Sciences ; Pumps ; pyruvate kinase ; sodium ; Sodium-Potassium-Exchanging ATPase - metabolism ; Spectrin - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (31), p.12794-12799</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 31, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-5d7313135bf7b8c49ab48811cf7707b27775ae35ddf4a00f68a9ae7456c978a83</citedby><cites>FETCH-LOGICAL-c492t-5d7313135bf7b8c49ab48811cf7707b27775ae35ddf4a00f68a9ae7456c978a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/31.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41685477$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41685477$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22745158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Haiyan</creatorcontrib><creatorcontrib>Puchulu-Campanella, Estela</creatorcontrib><creatorcontrib>Galan, Jacob A</creatorcontrib><creatorcontrib>Tao, W. Andy</creatorcontrib><creatorcontrib>Low, Philip S</creatorcontrib><creatorcontrib>Hoffman, Joseph F</creatorcontrib><title>Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The type of metabolic compartmentalization that occurs in red blood cells differs from the types that exist in most eukaryotic cells, such as intracellular organelles. In red blood cells (ghosts), ATP is sequestered within the cytoskeletal–membrane complex. These pools of ATP are known to directly fuel both the Na ⁺/K ⁺ and Ca ²⁺ pumps. ATP can be entrapped within these pools either by incubation with bulk ATP or by operation of the phosphoglycerate kinase and pyruvate kinase reactions to enzymatically generate ATP. When the pool is filled with nascent ATP, metabolic labeling of the Na ⁺/K ⁺ or Ca ²⁺ pump phosphoproteins (E Nₐ-P and E Cₐ-P, respectively) from bulk [γ- ³²P]-ATP is prevented until the pool is emptied by various means. Importantly, the pool also can be filled with the fluorescent ATP analog trinitrophenol ATP, as well as with a photoactivatable ATP analog, 8-azido-ATP (N ₃-ATP). Using the fluorescent ATP, we show that ATP accumulates and then disappears from the membrane as the ATP pools are filled and subsequently emptied, respectively. By loading N ₃-ATP into the membrane pool, we demonstrate that membrane proteins that contribute to the pool’s architecture can be photolabeled. With the aid of an antibody to N ₃-ATP, we identify these labeled proteins by immunoblotting and characterize their derived peptides by mass spectrometry. These analyses show that the specific peptides that corral the entrapped ATP derive from sequences within β-spectrin, ankyrin, band 3, and GAPDH.</description><subject>Actins</subject><subject>Adenosine triphosphatase</subject><subject>adenosine triphosphate</subject><subject>Adenosine Triphosphate - analogs & derivatives</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Adenosine Triphosphate - pharmacology</subject><subject>Anion Exchange Protein 1, Erythrocyte - metabolism</subject><subject>Ankyrins</subject><subject>Ankyrins - metabolism</subject><subject>Antibodies</subject><subject>Antibodies - chemistry</subject><subject>Antibodies - pharmacology</subject><subject>Azides - metabolism</subject><subject>Azides - pharmacology</subject><subject>Biological Sciences</subject><subject>calcium</subject><subject>Calcium Channels - metabolism</subject><subject>cation pumps</subject><subject>Cell membranes</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>Energy metabolism</subject><subject>Enzymes</subject><subject>Erythrocyte membrane</subject><subject>Erythrocyte Membrane - metabolism</subject><subject>Erythrocytes</subject><subject>eukaryotic cells</subject><subject>fluorescence</subject><subject>Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism</subject><subject>Humans</subject><subject>immunoblotting</subject><subject>Kinases</subject><subject>Mass spectrometry</subject><subject>Membranes</subject><subject>organelles</subject><subject>P branes</subject><subject>Peptides</subject><subject>phosphoglycerate kinase</subject><subject>phosphoproteins</subject><subject>Physical Sciences</subject><subject>Pumps</subject><subject>pyruvate kinase</subject><subject>sodium</subject><subject>Sodium-Potassium-Exchanging ATPase - metabolism</subject><subject>Spectrin - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi0EotvCmRNgqRcu246_YvuCVFV8VKoEEu3ZchJnN4sTB9tB6r_HYZctIEse2fPMq3lnEHpF4IKAZJfTaNMFoaCBcAL6CVqVm6wrruEpWgFQuVac8hN0mtIOALRQ8BydUCq5IEKtUL5p3Zj7rm9s7sOIQ4ebhxzSd-ddth6XMBQgYTc2PqR-3OC8dfjq7iueQvCpvGzG3ew83s6DHXF0La59CC1unPd4cEMd7ejwQX-ahym9QM8665N7eYhn6P7jh7vrz-vbL59urq9u1w3XNK9FKxkpR9SdrFX5szVXipCmkxJkTaWUwjom2rbjFqCrlNXWFWdVo6Wyip2h93vdaa4H1zbFSLTeTLEfbHwwwfbm38zYb80m_DSMl5kSXQTeHQRi-DG7lM3Qp8VXcRTmZAgwUFIwqAp6_h-6C3Mci73flCQVFUtHl3uqiSGl6LpjMwTMslGzbNQ8brRUvPnbw5H_s8IC4AOwVD7KacNIEZKaF-T1HtmlHOKR4aRSgktZ8m_3-c4GYzexT-b-WxlABUCoppKxXzP9u0I</recordid><startdate>20120731</startdate><enddate>20120731</enddate><creator>Chu, Haiyan</creator><creator>Puchulu-Campanella, Estela</creator><creator>Galan, Jacob A</creator><creator>Tao, W. Andy</creator><creator>Low, Philip S</creator><creator>Hoffman, Joseph F</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120731</creationdate><title>Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps</title><author>Chu, Haiyan ; Puchulu-Campanella, Estela ; Galan, Jacob A ; Tao, W. Andy ; Low, Philip S ; Hoffman, Joseph F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-5d7313135bf7b8c49ab48811cf7707b27775ae35ddf4a00f68a9ae7456c978a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Actins</topic><topic>Adenosine triphosphatase</topic><topic>adenosine triphosphate</topic><topic>Adenosine Triphosphate - analogs & derivatives</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Adenosine Triphosphate - pharmacology</topic><topic>Anion Exchange Protein 1, Erythrocyte - metabolism</topic><topic>Ankyrins</topic><topic>Ankyrins - metabolism</topic><topic>Antibodies</topic><topic>Antibodies - chemistry</topic><topic>Antibodies - pharmacology</topic><topic>Azides - metabolism</topic><topic>Azides - pharmacology</topic><topic>Biological Sciences</topic><topic>calcium</topic><topic>Calcium Channels - metabolism</topic><topic>cation pumps</topic><topic>Cell membranes</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>Energy metabolism</topic><topic>Enzymes</topic><topic>Erythrocyte membrane</topic><topic>Erythrocyte Membrane - metabolism</topic><topic>Erythrocytes</topic><topic>eukaryotic cells</topic><topic>fluorescence</topic><topic>Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism</topic><topic>Humans</topic><topic>immunoblotting</topic><topic>Kinases</topic><topic>Mass spectrometry</topic><topic>Membranes</topic><topic>organelles</topic><topic>P branes</topic><topic>Peptides</topic><topic>phosphoglycerate kinase</topic><topic>phosphoproteins</topic><topic>Physical Sciences</topic><topic>Pumps</topic><topic>pyruvate kinase</topic><topic>sodium</topic><topic>Sodium-Potassium-Exchanging ATPase - metabolism</topic><topic>Spectrin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Haiyan</creatorcontrib><creatorcontrib>Puchulu-Campanella, Estela</creatorcontrib><creatorcontrib>Galan, Jacob A</creatorcontrib><creatorcontrib>Tao, W. Andy</creatorcontrib><creatorcontrib>Low, Philip S</creatorcontrib><creatorcontrib>Hoffman, Joseph F</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Haiyan</au><au>Puchulu-Campanella, Estela</au><au>Galan, Jacob A</au><au>Tao, W. Andy</au><au>Low, Philip S</au><au>Hoffman, Joseph F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-07-31</date><risdate>2012</risdate><volume>109</volume><issue>31</issue><spage>12794</spage><epage>12799</epage><pages>12794-12799</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The type of metabolic compartmentalization that occurs in red blood cells differs from the types that exist in most eukaryotic cells, such as intracellular organelles. In red blood cells (ghosts), ATP is sequestered within the cytoskeletal–membrane complex. These pools of ATP are known to directly fuel both the Na ⁺/K ⁺ and Ca ²⁺ pumps. ATP can be entrapped within these pools either by incubation with bulk ATP or by operation of the phosphoglycerate kinase and pyruvate kinase reactions to enzymatically generate ATP. When the pool is filled with nascent ATP, metabolic labeling of the Na ⁺/K ⁺ or Ca ²⁺ pump phosphoproteins (E Nₐ-P and E Cₐ-P, respectively) from bulk [γ- ³²P]-ATP is prevented until the pool is emptied by various means. Importantly, the pool also can be filled with the fluorescent ATP analog trinitrophenol ATP, as well as with a photoactivatable ATP analog, 8-azido-ATP (N ₃-ATP). Using the fluorescent ATP, we show that ATP accumulates and then disappears from the membrane as the ATP pools are filled and subsequently emptied, respectively. By loading N ₃-ATP into the membrane pool, we demonstrate that membrane proteins that contribute to the pool’s architecture can be photolabeled. With the aid of an antibody to N ₃-ATP, we identify these labeled proteins by immunoblotting and characterize their derived peptides by mass spectrometry. These analyses show that the specific peptides that corral the entrapped ATP derive from sequences within β-spectrin, ankyrin, band 3, and GAPDH.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22745158</pmid><doi>10.1073/pnas.1209014109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (31), p.12794-12799 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_fao_agris_US201600129273 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection |
subjects | Actins Adenosine triphosphatase adenosine triphosphate Adenosine Triphosphate - analogs & derivatives Adenosine Triphosphate - metabolism Adenosine Triphosphate - pharmacology Anion Exchange Protein 1, Erythrocyte - metabolism Ankyrins Ankyrins - metabolism Antibodies Antibodies - chemistry Antibodies - pharmacology Azides - metabolism Azides - pharmacology Biological Sciences calcium Calcium Channels - metabolism cation pumps Cell membranes Cytoskeleton Cytoskeleton - metabolism Energy metabolism Enzymes Erythrocyte membrane Erythrocyte Membrane - metabolism Erythrocytes eukaryotic cells fluorescence Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism Humans immunoblotting Kinases Mass spectrometry Membranes organelles P branes Peptides phosphoglycerate kinase phosphoproteins Physical Sciences Pumps pyruvate kinase sodium Sodium-Potassium-Exchanging ATPase - metabolism Spectrin - metabolism |
title | Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20cytoskeletal%20elements%20enclosing%20the%20ATP%20pools%20that%20fuel%20human%20red%20blood%20cell%20membrane%20cation%20pumps&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chu,%20Haiyan&rft.date=2012-07-31&rft.volume=109&rft.issue=31&rft.spage=12794&rft.epage=12799&rft.pages=12794-12799&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1209014109&rft_dat=%3Cjstor_fao_a%3E41685477%3C/jstor_fao_a%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-5d7313135bf7b8c49ab48811cf7707b27775ae35ddf4a00f68a9ae7456c978a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030716258&rft_id=info:pmid/22745158&rft_jstor_id=41685477&rfr_iscdi=true |