Loading…

Prediction of function for the polyprenyl transferase subgroup in the isoprenoid synthase superfamily

The number of available protein sequences has increased exponentially with the advent of high-throughput genomic sequencing, creating a significant challenge for functional annotation. Here, we describe a large-scale study on assigning function to unknown members of the trans -polyprenyl transferase...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2013-03, Vol.110 (13), p.E1196-E1202
Main Authors: Wallrapp, Frank H, Pan, Jian-Jung, Ramamoorthy, Gurusankar, Almonacid, Daniel E, Hillerich, Brandan S, Seidel, Ronald, Patskovsky, Yury, Babbitt, Patricia C, Almo, Steven C, Jacobson, Matthew P, Poulter, C Dale
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c569t-8c223a88faf54ebeb02d977e08cc647b2ad493e66b7dd1ce3507cdc6e5728e3c3
cites cdi_FETCH-LOGICAL-c569t-8c223a88faf54ebeb02d977e08cc647b2ad493e66b7dd1ce3507cdc6e5728e3c3
container_end_page E1202
container_issue 13
container_start_page E1196
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Wallrapp, Frank H
Pan, Jian-Jung
Ramamoorthy, Gurusankar
Almonacid, Daniel E
Hillerich, Brandan S
Seidel, Ronald
Patskovsky, Yury
Babbitt, Patricia C
Almo, Steven C
Jacobson, Matthew P
Poulter, C Dale
description The number of available protein sequences has increased exponentially with the advent of high-throughput genomic sequencing, creating a significant challenge for functional annotation. Here, we describe a large-scale study on assigning function to unknown members of the trans -polyprenyl transferase (E-PTS) subgroup in the isoprenoid synthase superfamily, which provides substrates for the biosynthesis of the more than 55,000 isoprenoid metabolites. Although the mechanism for determining the product chain length for these enzymes is known, there is no simple relationship between function and primary sequence, so that assigning function is challenging. We addressed this challenge through large-scale bioinformatics analysis of >5,000 putative polyprenyl transferases; experimental characterization of the chain-length specificity of 79 diverse members of this group; determination of 27 structures of 19 of these enzymes, including seven cocrystallized with substrate analogs or products; and the development and successful application of a computational approach to predict function that leverages available structural data through homology modeling and docking of possible products into the active site. The crystallographic structures and computational structural models of the enzyme–ligand complexes elucidate the structural basis of specificity. As a result of this study, the percentage of E -PTS sequences similar to functionally annotated ones (BLAST e-value ≤ 1e ⁻⁷⁰) increased from 40.6 to 68.8%, and the percentage of sequences similar to available crystal structures increased from 28.9 to 47.4%. The high accuracy of our blind prediction of newly characterized enzymes indicates the potential to predict function to the complete polyprenyl transferase subgroup of the isoprenoid synthase superfamily computationally.
doi_str_mv 10.1073/pnas.1300632110
format article
fullrecord <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201600136469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1803152805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-8c223a88faf54ebeb02d977e08cc647b2ad493e66b7dd1ce3507cdc6e5728e3c3</originalsourceid><addsrcrecordid>eNqF0c2L1DAYBvAgijuunr1pwYuX2X2TtGlyEZZl_YAFBd1zSNM3M1k6SU1aof-97XYcPy6eEsgvD2_yEPKSwgWFml_2weQLygEEZ5TCI7KhoOhWlAoekw0Aq7eyZOUZeZbzPQCoSsJTcsZ4qXhViQ3BLwlbbwcfQxFd4caw7l1MxbDHoo_d1CcMU1cMyYTsMJmMRR6bXYpjX_jwwHyOi4q-LfIUhv1qekzOHHw3PSdPnOkyvjiu5-Tu_c2364_b288fPl1f3W5tJdSwlZYxbqR0xlUlNtgAa1VdI0hrRVk3zLTz3ChEU7cttcgrqG1rBVY1k8gtPyfv1tx-bA7YWgzz0J3ukz-YNOlovP77JPi93sUfmgvKBC3ngLfHgBS_j5gHffDZYteZgHHMmkrgtGISqv_TuRHOSyrlTN_8Q-_jmML8Ew-qZkpJNqvLVdkUc07oTnNT0Evbemlb_257vvHqz-ee_K96Z1AcwXLzFLfkcX1DqVrI65U4E7XZJZ_13VcGVABQLkqh-E9EvrxX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321729982</pqid></control><display><type>article</type><title>Prediction of function for the polyprenyl transferase subgroup in the isoprenoid synthase superfamily</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Wallrapp, Frank H ; Pan, Jian-Jung ; Ramamoorthy, Gurusankar ; Almonacid, Daniel E ; Hillerich, Brandan S ; Seidel, Ronald ; Patskovsky, Yury ; Babbitt, Patricia C ; Almo, Steven C ; Jacobson, Matthew P ; Poulter, C Dale</creator><creatorcontrib>Wallrapp, Frank H ; Pan, Jian-Jung ; Ramamoorthy, Gurusankar ; Almonacid, Daniel E ; Hillerich, Brandan S ; Seidel, Ronald ; Patskovsky, Yury ; Babbitt, Patricia C ; Almo, Steven C ; Jacobson, Matthew P ; Poulter, C Dale</creatorcontrib><description>The number of available protein sequences has increased exponentially with the advent of high-throughput genomic sequencing, creating a significant challenge for functional annotation. Here, we describe a large-scale study on assigning function to unknown members of the trans -polyprenyl transferase (E-PTS) subgroup in the isoprenoid synthase superfamily, which provides substrates for the biosynthesis of the more than 55,000 isoprenoid metabolites. Although the mechanism for determining the product chain length for these enzymes is known, there is no simple relationship between function and primary sequence, so that assigning function is challenging. We addressed this challenge through large-scale bioinformatics analysis of &gt;5,000 putative polyprenyl transferases; experimental characterization of the chain-length specificity of 79 diverse members of this group; determination of 27 structures of 19 of these enzymes, including seven cocrystallized with substrate analogs or products; and the development and successful application of a computational approach to predict function that leverages available structural data through homology modeling and docking of possible products into the active site. The crystallographic structures and computational structural models of the enzyme–ligand complexes elucidate the structural basis of specificity. As a result of this study, the percentage of E -PTS sequences similar to functionally annotated ones (BLAST e-value ≤ 1e ⁻⁷⁰) increased from 40.6 to 68.8%, and the percentage of sequences similar to available crystal structures increased from 28.9 to 47.4%. The high accuracy of our blind prediction of newly characterized enzymes indicates the potential to predict function to the complete polyprenyl transferase subgroup of the isoprenoid synthase superfamily computationally.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1300632110</identifier><identifier>PMID: 23493556</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>active sites ; Alkyl and Aryl Transferases - genetics ; Alkyl and Aryl Transferases - metabolism ; amino acid sequences ; Bioinformatics ; Biological Sciences ; Biosynthesis ; Carbon-Carbon Ligases - genetics ; Carbon-Carbon Ligases - metabolism ; crystal structure ; Crystallography, X-Ray ; Databases, Protein ; Enzymes ; Genomics ; isoprenoids ; Metabolites ; Molecular Docking Simulation - methods ; PNAS Plus ; prediction ; sequence analysis ; Sequence Analysis, Protein - methods ; Substrates ; transferases</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-03, Vol.110 (13), p.E1196-E1202</ispartof><rights>Copyright National Academy of Sciences Mar 26, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-8c223a88faf54ebeb02d977e08cc647b2ad493e66b7dd1ce3507cdc6e5728e3c3</citedby><cites>FETCH-LOGICAL-c569t-8c223a88faf54ebeb02d977e08cc647b2ad493e66b7dd1ce3507cdc6e5728e3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/13.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612614/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612614/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23493556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wallrapp, Frank H</creatorcontrib><creatorcontrib>Pan, Jian-Jung</creatorcontrib><creatorcontrib>Ramamoorthy, Gurusankar</creatorcontrib><creatorcontrib>Almonacid, Daniel E</creatorcontrib><creatorcontrib>Hillerich, Brandan S</creatorcontrib><creatorcontrib>Seidel, Ronald</creatorcontrib><creatorcontrib>Patskovsky, Yury</creatorcontrib><creatorcontrib>Babbitt, Patricia C</creatorcontrib><creatorcontrib>Almo, Steven C</creatorcontrib><creatorcontrib>Jacobson, Matthew P</creatorcontrib><creatorcontrib>Poulter, C Dale</creatorcontrib><title>Prediction of function for the polyprenyl transferase subgroup in the isoprenoid synthase superfamily</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The number of available protein sequences has increased exponentially with the advent of high-throughput genomic sequencing, creating a significant challenge for functional annotation. Here, we describe a large-scale study on assigning function to unknown members of the trans -polyprenyl transferase (E-PTS) subgroup in the isoprenoid synthase superfamily, which provides substrates for the biosynthesis of the more than 55,000 isoprenoid metabolites. Although the mechanism for determining the product chain length for these enzymes is known, there is no simple relationship between function and primary sequence, so that assigning function is challenging. We addressed this challenge through large-scale bioinformatics analysis of &gt;5,000 putative polyprenyl transferases; experimental characterization of the chain-length specificity of 79 diverse members of this group; determination of 27 structures of 19 of these enzymes, including seven cocrystallized with substrate analogs or products; and the development and successful application of a computational approach to predict function that leverages available structural data through homology modeling and docking of possible products into the active site. The crystallographic structures and computational structural models of the enzyme–ligand complexes elucidate the structural basis of specificity. As a result of this study, the percentage of E -PTS sequences similar to functionally annotated ones (BLAST e-value ≤ 1e ⁻⁷⁰) increased from 40.6 to 68.8%, and the percentage of sequences similar to available crystal structures increased from 28.9 to 47.4%. The high accuracy of our blind prediction of newly characterized enzymes indicates the potential to predict function to the complete polyprenyl transferase subgroup of the isoprenoid synthase superfamily computationally.</description><subject>active sites</subject><subject>Alkyl and Aryl Transferases - genetics</subject><subject>Alkyl and Aryl Transferases - metabolism</subject><subject>amino acid sequences</subject><subject>Bioinformatics</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Carbon-Carbon Ligases - genetics</subject><subject>Carbon-Carbon Ligases - metabolism</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Databases, Protein</subject><subject>Enzymes</subject><subject>Genomics</subject><subject>isoprenoids</subject><subject>Metabolites</subject><subject>Molecular Docking Simulation - methods</subject><subject>PNAS Plus</subject><subject>prediction</subject><subject>sequence analysis</subject><subject>Sequence Analysis, Protein - methods</subject><subject>Substrates</subject><subject>transferases</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0c2L1DAYBvAgijuunr1pwYuX2X2TtGlyEZZl_YAFBd1zSNM3M1k6SU1aof-97XYcPy6eEsgvD2_yEPKSwgWFml_2weQLygEEZ5TCI7KhoOhWlAoekw0Aq7eyZOUZeZbzPQCoSsJTcsZ4qXhViQ3BLwlbbwcfQxFd4caw7l1MxbDHoo_d1CcMU1cMyYTsMJmMRR6bXYpjX_jwwHyOi4q-LfIUhv1qekzOHHw3PSdPnOkyvjiu5-Tu_c2364_b288fPl1f3W5tJdSwlZYxbqR0xlUlNtgAa1VdI0hrRVk3zLTz3ChEU7cttcgrqG1rBVY1k8gtPyfv1tx-bA7YWgzz0J3ukz-YNOlovP77JPi93sUfmgvKBC3ngLfHgBS_j5gHffDZYteZgHHMmkrgtGISqv_TuRHOSyrlTN_8Q-_jmML8Ew-qZkpJNqvLVdkUc07oTnNT0Evbemlb_257vvHqz-ee_K96Z1AcwXLzFLfkcX1DqVrI65U4E7XZJZ_13VcGVABQLkqh-E9EvrxX</recordid><startdate>20130326</startdate><enddate>20130326</enddate><creator>Wallrapp, Frank H</creator><creator>Pan, Jian-Jung</creator><creator>Ramamoorthy, Gurusankar</creator><creator>Almonacid, Daniel E</creator><creator>Hillerich, Brandan S</creator><creator>Seidel, Ronald</creator><creator>Patskovsky, Yury</creator><creator>Babbitt, Patricia C</creator><creator>Almo, Steven C</creator><creator>Jacobson, Matthew P</creator><creator>Poulter, C Dale</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130326</creationdate><title>Prediction of function for the polyprenyl transferase subgroup in the isoprenoid synthase superfamily</title><author>Wallrapp, Frank H ; Pan, Jian-Jung ; Ramamoorthy, Gurusankar ; Almonacid, Daniel E ; Hillerich, Brandan S ; Seidel, Ronald ; Patskovsky, Yury ; Babbitt, Patricia C ; Almo, Steven C ; Jacobson, Matthew P ; Poulter, C Dale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-8c223a88faf54ebeb02d977e08cc647b2ad493e66b7dd1ce3507cdc6e5728e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>active sites</topic><topic>Alkyl and Aryl Transferases - genetics</topic><topic>Alkyl and Aryl Transferases - metabolism</topic><topic>amino acid sequences</topic><topic>Bioinformatics</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Carbon-Carbon Ligases - genetics</topic><topic>Carbon-Carbon Ligases - metabolism</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Databases, Protein</topic><topic>Enzymes</topic><topic>Genomics</topic><topic>isoprenoids</topic><topic>Metabolites</topic><topic>Molecular Docking Simulation - methods</topic><topic>PNAS Plus</topic><topic>prediction</topic><topic>sequence analysis</topic><topic>Sequence Analysis, Protein - methods</topic><topic>Substrates</topic><topic>transferases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallrapp, Frank H</creatorcontrib><creatorcontrib>Pan, Jian-Jung</creatorcontrib><creatorcontrib>Ramamoorthy, Gurusankar</creatorcontrib><creatorcontrib>Almonacid, Daniel E</creatorcontrib><creatorcontrib>Hillerich, Brandan S</creatorcontrib><creatorcontrib>Seidel, Ronald</creatorcontrib><creatorcontrib>Patskovsky, Yury</creatorcontrib><creatorcontrib>Babbitt, Patricia C</creatorcontrib><creatorcontrib>Almo, Steven C</creatorcontrib><creatorcontrib>Jacobson, Matthew P</creatorcontrib><creatorcontrib>Poulter, C Dale</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallrapp, Frank H</au><au>Pan, Jian-Jung</au><au>Ramamoorthy, Gurusankar</au><au>Almonacid, Daniel E</au><au>Hillerich, Brandan S</au><au>Seidel, Ronald</au><au>Patskovsky, Yury</au><au>Babbitt, Patricia C</au><au>Almo, Steven C</au><au>Jacobson, Matthew P</au><au>Poulter, C Dale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of function for the polyprenyl transferase subgroup in the isoprenoid synthase superfamily</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-03-26</date><risdate>2013</risdate><volume>110</volume><issue>13</issue><spage>E1196</spage><epage>E1202</epage><pages>E1196-E1202</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The number of available protein sequences has increased exponentially with the advent of high-throughput genomic sequencing, creating a significant challenge for functional annotation. Here, we describe a large-scale study on assigning function to unknown members of the trans -polyprenyl transferase (E-PTS) subgroup in the isoprenoid synthase superfamily, which provides substrates for the biosynthesis of the more than 55,000 isoprenoid metabolites. Although the mechanism for determining the product chain length for these enzymes is known, there is no simple relationship between function and primary sequence, so that assigning function is challenging. We addressed this challenge through large-scale bioinformatics analysis of &gt;5,000 putative polyprenyl transferases; experimental characterization of the chain-length specificity of 79 diverse members of this group; determination of 27 structures of 19 of these enzymes, including seven cocrystallized with substrate analogs or products; and the development and successful application of a computational approach to predict function that leverages available structural data through homology modeling and docking of possible products into the active site. The crystallographic structures and computational structural models of the enzyme–ligand complexes elucidate the structural basis of specificity. As a result of this study, the percentage of E -PTS sequences similar to functionally annotated ones (BLAST e-value ≤ 1e ⁻⁷⁰) increased from 40.6 to 68.8%, and the percentage of sequences similar to available crystal structures increased from 28.9 to 47.4%. The high accuracy of our blind prediction of newly characterized enzymes indicates the potential to predict function to the complete polyprenyl transferase subgroup of the isoprenoid synthase superfamily computationally.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23493556</pmid><doi>10.1073/pnas.1300632110</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-03, Vol.110 (13), p.E1196-E1202
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US201600136469
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects active sites
Alkyl and Aryl Transferases - genetics
Alkyl and Aryl Transferases - metabolism
amino acid sequences
Bioinformatics
Biological Sciences
Biosynthesis
Carbon-Carbon Ligases - genetics
Carbon-Carbon Ligases - metabolism
crystal structure
Crystallography, X-Ray
Databases, Protein
Enzymes
Genomics
isoprenoids
Metabolites
Molecular Docking Simulation - methods
PNAS Plus
prediction
sequence analysis
Sequence Analysis, Protein - methods
Substrates
transferases
title Prediction of function for the polyprenyl transferase subgroup in the isoprenoid synthase superfamily
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20function%20for%20the%20polyprenyl%20transferase%20subgroup%20in%20the%20isoprenoid%20synthase%20superfamily&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wallrapp,%20Frank%20H&rft.date=2013-03-26&rft.volume=110&rft.issue=13&rft.spage=E1196&rft.epage=E1202&rft.pages=E1196-E1202&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1300632110&rft_dat=%3Cproquest_fao_a%3E1803152805%3C/proquest_fao_a%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c569t-8c223a88faf54ebeb02d977e08cc647b2ad493e66b7dd1ce3507cdc6e5728e3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1321729982&rft_id=info:pmid/23493556&rfr_iscdi=true