Loading…

Photosynthesis and biomass production by millet (pennisetum glaucum) and taro (colocasia esculenta) grown under baobab (adansonia digitata) and néré (parkia biglobosa) in an agroforestry parkland system of burkina faso (west africa)

Photosynthesis and biomass production by millet (Pennisetum glaucum) and taro (Colocasia esculenta) grown under baobab (Adansonia digitata) and néré (Parkia biglobosa) was studied at Nobéré (Burkina Faso) with the aim of optimising parkland systems productivity. Millet yielded the highest biomas...

Full description

Saved in:
Bibliographic Details
Published in:Experimental agriculture 2012, Vol.48 (2), p.283-300
Main Authors: SANOU, JOSIAS, JULES BAYALA, PAULIN BAZIÃ, ZEWGE TEKLEHAIMANOT
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photosynthesis and biomass production by millet (Pennisetum glaucum) and taro (Colocasia esculenta) grown under baobab (Adansonia digitata) and néré (Parkia biglobosa) was studied at Nobéré (Burkina Faso) with the aim of optimising parkland systems productivity. Millet yielded the highest biomass under Baobab and the lowest biomass was recorded in the zone close to the tree trunk of néré. In contrast, the biomass of taro was higher in heavy shaded zones under néré and the zone close to baobab's trunk. The two crops showed an increasing trend of photosynthesis rate (PN) from tree trunk to the open area. However, the increase in the PN of taro from tree trunk to the open field was lower compared to that of millet. By increasing its leaf area index (LAI) under shade, taro displayed higher biomass production under tree compared to the open area while an opposite trend was observed in millet. The high millet biomass production under baobab could be explained by light availability and the reduction of temperature under shade compared to the open field. The adaptation of taro to shade by increasing its LAI and thus avoiding drastic reduction in PN under shade resulted in better biomass production under heavy shade. Therefore, it was concluded that by replacing millet with taro under dense tree crowns the productivity of agroforestry parkland systems could be increased.
ISSN:1469-4441
1469-4441