Loading…

Identification of Erwinia amylovora, the fireblight pathogen, by colony hybridization with DNA from plasmid pEA29

All strains of Erwinia amylovora characterized carry a medium-size plasmid of 29 kilobases (pEA29). We mapped this plasmid with various restriction enzymes, cloned the whole DNA into an Escherichia coli plasmid, and subcloned restriction fragments. These DNA species were used for identification of E...

Full description

Saved in:
Bibliographic Details
Published in:Applied and Environmental Microbiology 1988-11, Vol.54 (11), p.2798-2802
Main Authors: Falkenstein, H, Bellemann, P, Walter, S, Zeller, W, Geider, K
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:All strains of Erwinia amylovora characterized carry a medium-size plasmid of 29 kilobases (pEA29). We mapped this plasmid with various restriction enzymes, cloned the whole DNA into an Escherichia coli plasmid, and subcloned restriction fragments. These DNA species were used for identification of E. amylovora after handling of strains in the laboratory and also in field isolates. About 70 strains of E. amylovora and 24 strains from nine other species, mainly found in plant habitats, were checked in a colony hybridization test. Virulent and avirulent E. amylovora strains reacted positively, whereas the other species were negative. Apart from the hybridization assay, the positive strains were additionally tested for ooze production on rich agar with 5% sucrose and on immature-pear slices. Unspecific background hybridization of non-E. amylovora strains found for hybridization with the whole E. amylovora plasmid was almost eliminated when a 5-kilobase SalI fragment from pEA29 was used as a probe and when the washes after the hybridization procedure were done with high stringency. Under these conditions, E. amylovora could be readily identified from field isolates
ISSN:0099-2240
1098-5336
DOI:10.1128/AEM.54.11.2798-2802.1988