Loading…

Unequal and Genotype-Dependent Expression of Mitochondrial Genes in Larvae of the Pacific Oyster Crassostrea gigas

Mitochondria are essential for regulation of energy metabolism, but little is known about patterns of mitochondrial genome expression in invertebrates. To explore the association of mitochondrial expression with differential growth of Crassostrea gigas, the Pacific oyster, we crossed two inbred line...

Full description

Saved in:
Bibliographic Details
Published in:The Biological bulletin (Lancaster) 2010-04, Vol.218 (2), p.122-131
Main Authors: CUROLE, JASON P., MEYER, ELI, MANAHAN, DONAL T., HEDGECOCK, DENNIS
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c620t-d206f3c6f50e85c373bdb87a72314d848ce6800f95de3287f7c349b5ad99a5ab3
cites cdi_FETCH-LOGICAL-c620t-d206f3c6f50e85c373bdb87a72314d848ce6800f95de3287f7c349b5ad99a5ab3
container_end_page 131
container_issue 2
container_start_page 122
container_title The Biological bulletin (Lancaster)
container_volume 218
creator CUROLE, JASON P.
MEYER, ELI
MANAHAN, DONAL T.
HEDGECOCK, DENNIS
description Mitochondria are essential for regulation of energy metabolism, but little is known about patterns of mitochondrial genome expression in invertebrates. To explore the association of mitochondrial expression with differential growth of Crassostrea gigas, the Pacific oyster, we crossed two inbred lines to produce inbred and hybrid larvae, which grew at different rates under the same environmental conditions. Using high-throughput cloning and sequencing methods, we identified 1.1 million expressed sequence tags from the mitochondrial genome, 96.7% of which were perfect matches to genes targeted by the method. Expression varied significantly among genes, ranging over nearly four orders of magnitude, from mt:lRNA, which constituted 21% of all transcripts, to mt:CoII, which constituted less than 0.02% of all transcripts. Variable expression of genes coding for subunits of macro-molecular complexes (e.g., mt:CoI and mt:CoII) implies that stoichiometry in these complexes must be regulated post-transcriptionally. Surprisingly, the mitochondrial transcriptome contained non-coding transcripts, which may play a role in the regulation of mitochondrial function. Finally, mitochondrial expression depended strongly on maternal factors and nuclear-cytoplasmic interactions, which may explain previously observed growth differences between reciprocal hybrids. Differences in mitochondrial gene expression could provide a biochemical index for the metabolic basis of genetically determined differences in larval growth.
doi_str_mv 10.1086/BBLv218n2p122
format article
fullrecord <record><control><sourceid>gale_jstor</sourceid><recordid>TN_cdi_gale_incontextcollege_GICCO_A227631563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A227631563</galeid><jstor_id>25664514</jstor_id><sourcerecordid>A227631563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-d206f3c6f50e85c373bdb87a72314d848ce6800f95de3287f7c349b5ad99a5ab3</originalsourceid><addsrcrecordid>eNqN0s1v0zAUAPAIgVgZHDmConFACGX4I3ac49aNMqlQJNg5cp2X1FVqZ7Yzrf_9XFqYOlWAfLBs_d6z_fyS5DVGpxgJ_un8fHpLsDCkx4Q8SUa4pGUmeFk8TUYIIZ5RLNhR8sL7ZVwigvPnyRFBOaaFKEeJuzZwM8gulaZOJ2BsWPeQXUAPpgYT0su73oH32prUNulXHaxaWFM7HUMiB59qk06lu5WwAWEB6XepdKNVOlv7AC4dO-m99cGBTFvdSv8yedbIzsOr3XycXH--_Dn-kk1nk6vx2TRTnKCQ1QTxhireMASCKVrQeT0XhSwIxXktcqGAC4SaktVAiSiaQtG8nDNZl6Vkck6Pk_fbvL2zNwP4UK20V9B10oAdfFXkOceFYOLfklJOWTwjypNHcmkHZ-IzKlzmmCNOaUTvtqiVHVTaNDY4qTYpqzNCCk4x4xuVHVBtrKmTnTXQ6Li9508P-DhqWGl1MODDXkA0Ae5CKwfvq6sf3_7bisn0bxffWWW7Dlqo4h-OZwe9ctZ7B03VO72Sbl1hVG16uNrr4ejf7mo8zFdQ_9G_mzaCj1swqIVWsrW_WvThJx6ne7PVSx-se8jGOM8Zzuk9tJMAYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194160633</pqid></control><display><type>article</type><title>Unequal and Genotype-Dependent Expression of Mitochondrial Genes in Larvae of the Pacific Oyster Crassostrea gigas</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>CUROLE, JASON P. ; MEYER, ELI ; MANAHAN, DONAL T. ; HEDGECOCK, DENNIS</creator><creatorcontrib>CUROLE, JASON P. ; MEYER, ELI ; MANAHAN, DONAL T. ; HEDGECOCK, DENNIS</creatorcontrib><description>Mitochondria are essential for regulation of energy metabolism, but little is known about patterns of mitochondrial genome expression in invertebrates. To explore the association of mitochondrial expression with differential growth of Crassostrea gigas, the Pacific oyster, we crossed two inbred lines to produce inbred and hybrid larvae, which grew at different rates under the same environmental conditions. Using high-throughput cloning and sequencing methods, we identified 1.1 million expressed sequence tags from the mitochondrial genome, 96.7% of which were perfect matches to genes targeted by the method. Expression varied significantly among genes, ranging over nearly four orders of magnitude, from mt:lRNA, which constituted 21% of all transcripts, to mt:CoII, which constituted less than 0.02% of all transcripts. Variable expression of genes coding for subunits of macro-molecular complexes (e.g., mt:CoI and mt:CoII) implies that stoichiometry in these complexes must be regulated post-transcriptionally. Surprisingly, the mitochondrial transcriptome contained non-coding transcripts, which may play a role in the regulation of mitochondrial function. Finally, mitochondrial expression depended strongly on maternal factors and nuclear-cytoplasmic interactions, which may explain previously observed growth differences between reciprocal hybrids. Differences in mitochondrial gene expression could provide a biochemical index for the metabolic basis of genetically determined differences in larval growth.</description><identifier>ISSN: 0006-3185</identifier><identifier>EISSN: 1939-8697</identifier><identifier>DOI: 10.1086/BBLv218n2p122</identifier><identifier>PMID: 20413789</identifier><language>eng</language><publisher>United States: Marine Biological Laboratory</publisher><subject>Animals ; Crassostrea ; Crassostrea - genetics ; Crassostrea gigas ; Crosses, Genetic ; DNA sequencing ; DNA, Mitochondrial - chemistry ; DNA, Mitochondrial - genetics ; Gene Expression ; Genes ; Genes, Mitochondrial ; Genetic aspects ; Genetic loci ; Genomes ; Genomics ; Genotype ; Genotype &amp; phenotype ; Genotypes ; Hybridity ; Inbreeding ; Larva - genetics ; Larvae ; Marine ; Metabolism ; Mitochondria ; Mitochondrial DNA ; Mitochondrial genes ; Mitochondrial Proteins - biosynthesis ; Molecular Sequence Data ; Nucleotide sequencing ; Oysters ; Physiological aspects ; PHYSIOLOGY &amp; BIOMECHANICS ; RNA ; RNA, Untranslated - biosynthesis ; Sequence Analysis, DNA ; Signatures</subject><ispartof>The Biological bulletin (Lancaster), 2010-04, Vol.218 (2), p.122-131</ispartof><rights>Copyright © 2010 Marine Biological Laboratory</rights><rights>COPYRIGHT 2010 University of Chicago Press</rights><rights>Copyright Marine Biological Laboratory Apr 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-d206f3c6f50e85c373bdb87a72314d848ce6800f95de3287f7c349b5ad99a5ab3</citedby><cites>FETCH-LOGICAL-c620t-d206f3c6f50e85c373bdb87a72314d848ce6800f95de3287f7c349b5ad99a5ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25664514$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25664514$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20413789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>CUROLE, JASON P.</creatorcontrib><creatorcontrib>MEYER, ELI</creatorcontrib><creatorcontrib>MANAHAN, DONAL T.</creatorcontrib><creatorcontrib>HEDGECOCK, DENNIS</creatorcontrib><title>Unequal and Genotype-Dependent Expression of Mitochondrial Genes in Larvae of the Pacific Oyster Crassostrea gigas</title><title>The Biological bulletin (Lancaster)</title><addtitle>Biol Bull</addtitle><description>Mitochondria are essential for regulation of energy metabolism, but little is known about patterns of mitochondrial genome expression in invertebrates. To explore the association of mitochondrial expression with differential growth of Crassostrea gigas, the Pacific oyster, we crossed two inbred lines to produce inbred and hybrid larvae, which grew at different rates under the same environmental conditions. Using high-throughput cloning and sequencing methods, we identified 1.1 million expressed sequence tags from the mitochondrial genome, 96.7% of which were perfect matches to genes targeted by the method. Expression varied significantly among genes, ranging over nearly four orders of magnitude, from mt:lRNA, which constituted 21% of all transcripts, to mt:CoII, which constituted less than 0.02% of all transcripts. Variable expression of genes coding for subunits of macro-molecular complexes (e.g., mt:CoI and mt:CoII) implies that stoichiometry in these complexes must be regulated post-transcriptionally. Surprisingly, the mitochondrial transcriptome contained non-coding transcripts, which may play a role in the regulation of mitochondrial function. Finally, mitochondrial expression depended strongly on maternal factors and nuclear-cytoplasmic interactions, which may explain previously observed growth differences between reciprocal hybrids. Differences in mitochondrial gene expression could provide a biochemical index for the metabolic basis of genetically determined differences in larval growth.</description><subject>Animals</subject><subject>Crassostrea</subject><subject>Crassostrea - genetics</subject><subject>Crassostrea gigas</subject><subject>Crosses, Genetic</subject><subject>DNA sequencing</subject><subject>DNA, Mitochondrial - chemistry</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Genes, Mitochondrial</subject><subject>Genetic aspects</subject><subject>Genetic loci</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Hybridity</subject><subject>Inbreeding</subject><subject>Larva - genetics</subject><subject>Larvae</subject><subject>Marine</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial genes</subject><subject>Mitochondrial Proteins - biosynthesis</subject><subject>Molecular Sequence Data</subject><subject>Nucleotide sequencing</subject><subject>Oysters</subject><subject>Physiological aspects</subject><subject>PHYSIOLOGY &amp; BIOMECHANICS</subject><subject>RNA</subject><subject>RNA, Untranslated - biosynthesis</subject><subject>Sequence Analysis, DNA</subject><subject>Signatures</subject><issn>0006-3185</issn><issn>1939-8697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqN0s1v0zAUAPAIgVgZHDmConFACGX4I3ac49aNMqlQJNg5cp2X1FVqZ7Yzrf_9XFqYOlWAfLBs_d6z_fyS5DVGpxgJ_un8fHpLsDCkx4Q8SUa4pGUmeFk8TUYIIZ5RLNhR8sL7ZVwigvPnyRFBOaaFKEeJuzZwM8gulaZOJ2BsWPeQXUAPpgYT0su73oH32prUNulXHaxaWFM7HUMiB59qk06lu5WwAWEB6XepdKNVOlv7AC4dO-m99cGBTFvdSv8yedbIzsOr3XycXH--_Dn-kk1nk6vx2TRTnKCQ1QTxhireMASCKVrQeT0XhSwIxXktcqGAC4SaktVAiSiaQtG8nDNZl6Vkck6Pk_fbvL2zNwP4UK20V9B10oAdfFXkOceFYOLfklJOWTwjypNHcmkHZ-IzKlzmmCNOaUTvtqiVHVTaNDY4qTYpqzNCCk4x4xuVHVBtrKmTnTXQ6Li9508P-DhqWGl1MODDXkA0Ae5CKwfvq6sf3_7bisn0bxffWWW7Dlqo4h-OZwe9ctZ7B03VO72Sbl1hVG16uNrr4ejf7mo8zFdQ_9G_mzaCj1swqIVWsrW_WvThJx6ne7PVSx-se8jGOM8Zzuk9tJMAYQ</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>CUROLE, JASON P.</creator><creator>MEYER, ELI</creator><creator>MANAHAN, DONAL T.</creator><creator>HEDGECOCK, DENNIS</creator><general>Marine Biological Laboratory</general><general>University of Chicago Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>ISN</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>K9.</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7SN</scope><scope>C1K</scope><scope>H99</scope><scope>L.F</scope></search><sort><creationdate>20100401</creationdate><title>Unequal and Genotype-Dependent Expression of Mitochondrial Genes in Larvae of the Pacific Oyster Crassostrea gigas</title><author>CUROLE, JASON P. ; MEYER, ELI ; MANAHAN, DONAL T. ; HEDGECOCK, DENNIS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-d206f3c6f50e85c373bdb87a72314d848ce6800f95de3287f7c349b5ad99a5ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Crassostrea</topic><topic>Crassostrea - genetics</topic><topic>Crassostrea gigas</topic><topic>Crosses, Genetic</topic><topic>DNA sequencing</topic><topic>DNA, Mitochondrial - chemistry</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Genes, Mitochondrial</topic><topic>Genetic aspects</topic><topic>Genetic loci</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Hybridity</topic><topic>Inbreeding</topic><topic>Larva - genetics</topic><topic>Larvae</topic><topic>Marine</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial genes</topic><topic>Mitochondrial Proteins - biosynthesis</topic><topic>Molecular Sequence Data</topic><topic>Nucleotide sequencing</topic><topic>Oysters</topic><topic>Physiological aspects</topic><topic>PHYSIOLOGY &amp; BIOMECHANICS</topic><topic>RNA</topic><topic>RNA, Untranslated - biosynthesis</topic><topic>Sequence Analysis, DNA</topic><topic>Signatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CUROLE, JASON P.</creatorcontrib><creatorcontrib>MEYER, ELI</creatorcontrib><creatorcontrib>MANAHAN, DONAL T.</creatorcontrib><creatorcontrib>HEDGECOCK, DENNIS</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Canada</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><jtitle>The Biological bulletin (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CUROLE, JASON P.</au><au>MEYER, ELI</au><au>MANAHAN, DONAL T.</au><au>HEDGECOCK, DENNIS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unequal and Genotype-Dependent Expression of Mitochondrial Genes in Larvae of the Pacific Oyster Crassostrea gigas</atitle><jtitle>The Biological bulletin (Lancaster)</jtitle><addtitle>Biol Bull</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>218</volume><issue>2</issue><spage>122</spage><epage>131</epage><pages>122-131</pages><issn>0006-3185</issn><eissn>1939-8697</eissn><abstract>Mitochondria are essential for regulation of energy metabolism, but little is known about patterns of mitochondrial genome expression in invertebrates. To explore the association of mitochondrial expression with differential growth of Crassostrea gigas, the Pacific oyster, we crossed two inbred lines to produce inbred and hybrid larvae, which grew at different rates under the same environmental conditions. Using high-throughput cloning and sequencing methods, we identified 1.1 million expressed sequence tags from the mitochondrial genome, 96.7% of which were perfect matches to genes targeted by the method. Expression varied significantly among genes, ranging over nearly four orders of magnitude, from mt:lRNA, which constituted 21% of all transcripts, to mt:CoII, which constituted less than 0.02% of all transcripts. Variable expression of genes coding for subunits of macro-molecular complexes (e.g., mt:CoI and mt:CoII) implies that stoichiometry in these complexes must be regulated post-transcriptionally. Surprisingly, the mitochondrial transcriptome contained non-coding transcripts, which may play a role in the regulation of mitochondrial function. Finally, mitochondrial expression depended strongly on maternal factors and nuclear-cytoplasmic interactions, which may explain previously observed growth differences between reciprocal hybrids. Differences in mitochondrial gene expression could provide a biochemical index for the metabolic basis of genetically determined differences in larval growth.</abstract><cop>United States</cop><pub>Marine Biological Laboratory</pub><pmid>20413789</pmid><doi>10.1086/BBLv218n2p122</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3185
ispartof The Biological bulletin (Lancaster), 2010-04, Vol.218 (2), p.122-131
issn 0006-3185
1939-8697
language eng
recordid cdi_gale_incontextcollege_GICCO_A227631563
source JSTOR Archival Journals and Primary Sources Collection
subjects Animals
Crassostrea
Crassostrea - genetics
Crassostrea gigas
Crosses, Genetic
DNA sequencing
DNA, Mitochondrial - chemistry
DNA, Mitochondrial - genetics
Gene Expression
Genes
Genes, Mitochondrial
Genetic aspects
Genetic loci
Genomes
Genomics
Genotype
Genotype & phenotype
Genotypes
Hybridity
Inbreeding
Larva - genetics
Larvae
Marine
Metabolism
Mitochondria
Mitochondrial DNA
Mitochondrial genes
Mitochondrial Proteins - biosynthesis
Molecular Sequence Data
Nucleotide sequencing
Oysters
Physiological aspects
PHYSIOLOGY & BIOMECHANICS
RNA
RNA, Untranslated - biosynthesis
Sequence Analysis, DNA
Signatures
title Unequal and Genotype-Dependent Expression of Mitochondrial Genes in Larvae of the Pacific Oyster Crassostrea gigas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unequal%20and%20Genotype-Dependent%20Expression%20of%20Mitochondrial%20Genes%20in%20Larvae%20of%20the%20Pacific%20Oyster%20Crassostrea%20gigas&rft.jtitle=The%20Biological%20bulletin%20(Lancaster)&rft.au=CUROLE,%20JASON%20P.&rft.date=2010-04-01&rft.volume=218&rft.issue=2&rft.spage=122&rft.epage=131&rft.pages=122-131&rft.issn=0006-3185&rft.eissn=1939-8697&rft_id=info:doi/10.1086/BBLv218n2p122&rft_dat=%3Cgale_jstor%3EA227631563%3C/gale_jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c620t-d206f3c6f50e85c373bdb87a72314d848ce6800f95de3287f7c349b5ad99a5ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194160633&rft_id=info:pmid/20413789&rft_galeid=A227631563&rft_jstor_id=25664514&rfr_iscdi=true