Loading…
A G protein couples serotonin and GABAB receptors to the same channels in hippocampus
Both serotonin and the selective gamma-aminobutyric acidB (GABAB) agonist, baclofen, increase potassium (K+) conductance in hippocampal pyramidal cells. Although these agonists act on separate receptors, the potassium currents evoked by the agonists are not additive, indicating that the two receptor...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 1986-12, Vol.234 (4781), p.1261-1265 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Both serotonin and the selective gamma-aminobutyric acidB (GABAB) agonist, baclofen, increase potassium (K+) conductance in hippocampal pyramidal cells. Although these agonists act on separate receptors, the potassium currents evoked by the agonists are not additive, indicating that the two receptors share the same potassium channels. Experiments with hydrolysis-resistant guanosine triphosphate (GTP) and guanosine diphosphate analogs and pertussis toxin indicate that the opening of the potassium channels by serotonin and GABAB receptors involves a pertussis toxin-sensitive GTP-binding (G) protein, which may directly couple the two receptors to the potassium channel. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.2430334 |