Loading…
Using machine learning to determine the nationalities of the fastest 100-mile ultra-marathoners and identify top racing events
Saved in:
Published in: | PLoS ONE 2024, Vol.19 (8), p.e0303960 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Report |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 8 |
container_start_page | e0303960 |
container_title | PLoS ONE |
container_volume | 19 |
creator | Knechtle, Beat Weiss, Katja Valero, David Villiger, Elias Nikolaidis, Pantelis T Andrade, Marilia Santos Scheer, Volker Cuk, Ivan Gajda, Robert Thuany, Mabliny |
description | |
doi_str_mv | 10.1371/journal.pone.0303960 |
format | report |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_incontextgauss_IOV_A805772068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A805772068</galeid><sourcerecordid>A805772068</sourcerecordid><originalsourceid>FETCH-gale_incontextgauss_IOV_A8057720683</originalsourceid><addsrcrecordid>eNqVjr1OxDAQhC0EEsfPG1C4pUhYx7okVyIEgooGaKNVskl8cuyTd4Og4dlJEAUt1Yw-jWZGqSsDubGVudnHOQX0-SEGysGC3ZVwpDZmZ4usLMAe__Gn6ox5D7C1dVlu1NcruzDoCdvRBdKeMIUVSNQdCaVppTKSDiguLiNOHLGO_Q_skYVYtAHIJudJz14SZhMmlHE5k1hj6LTrKIjrP5fWg07YrgP0vjC-UCc9eqbLXz1X1w_3L3eP2YCeGhfaGIQ-ZMCZuXl6fmtua9hWVQFlbf-T_QbDsV2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Using machine learning to determine the nationalities of the fastest 100-mile ultra-marathoners and identify top racing events</title><source>Publicly Available Content (ProQuest)</source><source>PubMed</source><creator>Knechtle, Beat ; Weiss, Katja ; Valero, David ; Villiger, Elias ; Nikolaidis, Pantelis T ; Andrade, Marilia Santos ; Scheer, Volker ; Cuk, Ivan ; Gajda, Robert ; Thuany, Mabliny</creator><creatorcontrib>Knechtle, Beat ; Weiss, Katja ; Valero, David ; Villiger, Elias ; Nikolaidis, Pantelis T ; Andrade, Marilia Santos ; Scheer, Volker ; Cuk, Ivan ; Gajda, Robert ; Thuany, Mabliny</creatorcontrib><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0303960</identifier><language>eng</language><publisher>Public Library of Science</publisher><subject>Athletes ; Citizenship ; Demographic aspects ; Machine learning ; Marathon running ; Physiological research</subject><ispartof>PLoS ONE, 2024, Vol.19 (8), p.e0303960</ispartof><tpages>e0303960</tpages><format>e0303960</format><rights>COPYRIGHT 2024 Public Library of Science</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,4476,27902</link.rule.ids></links><search><creatorcontrib>Knechtle, Beat</creatorcontrib><creatorcontrib>Weiss, Katja</creatorcontrib><creatorcontrib>Valero, David</creatorcontrib><creatorcontrib>Villiger, Elias</creatorcontrib><creatorcontrib>Nikolaidis, Pantelis T</creatorcontrib><creatorcontrib>Andrade, Marilia Santos</creatorcontrib><creatorcontrib>Scheer, Volker</creatorcontrib><creatorcontrib>Cuk, Ivan</creatorcontrib><creatorcontrib>Gajda, Robert</creatorcontrib><creatorcontrib>Thuany, Mabliny</creatorcontrib><title>Using machine learning to determine the nationalities of the fastest 100-mile ultra-marathoners and identify top racing events</title><title>PLoS ONE</title><subject>Athletes</subject><subject>Citizenship</subject><subject>Demographic aspects</subject><subject>Machine learning</subject><subject>Marathon running</subject><subject>Physiological research</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2024</creationdate><recordtype>report</recordtype><recordid>eNqVjr1OxDAQhC0EEsfPG1C4pUhYx7okVyIEgooGaKNVskl8cuyTd4Og4dlJEAUt1Yw-jWZGqSsDubGVudnHOQX0-SEGysGC3ZVwpDZmZ4usLMAe__Gn6ox5D7C1dVlu1NcruzDoCdvRBdKeMIUVSNQdCaVppTKSDiguLiNOHLGO_Q_skYVYtAHIJudJz14SZhMmlHE5k1hj6LTrKIjrP5fWg07YrgP0vjC-UCc9eqbLXz1X1w_3L3eP2YCeGhfaGIQ-ZMCZuXl6fmtua9hWVQFlbf-T_QbDsV2c</recordid><startdate>20240822</startdate><enddate>20240822</enddate><creator>Knechtle, Beat</creator><creator>Weiss, Katja</creator><creator>Valero, David</creator><creator>Villiger, Elias</creator><creator>Nikolaidis, Pantelis T</creator><creator>Andrade, Marilia Santos</creator><creator>Scheer, Volker</creator><creator>Cuk, Ivan</creator><creator>Gajda, Robert</creator><creator>Thuany, Mabliny</creator><general>Public Library of Science</general><scope>IOV</scope></search><sort><creationdate>20240822</creationdate><title>Using machine learning to determine the nationalities of the fastest 100-mile ultra-marathoners and identify top racing events</title><author>Knechtle, Beat ; Weiss, Katja ; Valero, David ; Villiger, Elias ; Nikolaidis, Pantelis T ; Andrade, Marilia Santos ; Scheer, Volker ; Cuk, Ivan ; Gajda, Robert ; Thuany, Mabliny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_incontextgauss_IOV_A8057720683</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Athletes</topic><topic>Citizenship</topic><topic>Demographic aspects</topic><topic>Machine learning</topic><topic>Marathon running</topic><topic>Physiological research</topic><toplevel>online_resources</toplevel><creatorcontrib>Knechtle, Beat</creatorcontrib><creatorcontrib>Weiss, Katja</creatorcontrib><creatorcontrib>Valero, David</creatorcontrib><creatorcontrib>Villiger, Elias</creatorcontrib><creatorcontrib>Nikolaidis, Pantelis T</creatorcontrib><creatorcontrib>Andrade, Marilia Santos</creatorcontrib><creatorcontrib>Scheer, Volker</creatorcontrib><creatorcontrib>Cuk, Ivan</creatorcontrib><creatorcontrib>Gajda, Robert</creatorcontrib><creatorcontrib>Thuany, Mabliny</creatorcontrib><collection>Gale In Context: Opposing Viewpoints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knechtle, Beat</au><au>Weiss, Katja</au><au>Valero, David</au><au>Villiger, Elias</au><au>Nikolaidis, Pantelis T</au><au>Andrade, Marilia Santos</au><au>Scheer, Volker</au><au>Cuk, Ivan</au><au>Gajda, Robert</au><au>Thuany, Mabliny</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><atitle>Using machine learning to determine the nationalities of the fastest 100-mile ultra-marathoners and identify top racing events</atitle><jtitle>PLoS ONE</jtitle><date>2024-08-22</date><risdate>2024</risdate><volume>19</volume><issue>8</issue><spage>e0303960</spage><pages>e0303960-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><pub>Public Library of Science</pub><doi>10.1371/journal.pone.0303960</doi><tpages>e0303960</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PLoS ONE, 2024, Vol.19 (8), p.e0303960 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_gale_incontextgauss_IOV_A805772068 |
source | Publicly Available Content (ProQuest); PubMed |
subjects | Athletes Citizenship Demographic aspects Machine learning Marathon running Physiological research |
title | Using machine learning to determine the nationalities of the fastest 100-mile ultra-marathoners and identify top racing events |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T13%3A58%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.atitle=Using%20machine%20learning%20to%20determine%20the%20nationalities%20of%20the%20fastest%20100-mile%20ultra-marathoners%20and%20identify%20top%20racing%20events&rft.jtitle=PLoS%20ONE&rft.au=Knechtle,%20Beat&rft.date=2024-08-22&rft.volume=19&rft.issue=8&rft.spage=e0303960&rft.pages=e0303960-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0303960&rft_dat=%3Cgale%3EA805772068%3C/gale%3E%3Cgrp_id%3Ecdi_FETCH-gale_incontextgauss_IOV_A8057720683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A805772068&rfr_iscdi=true |