Loading…
Some Historical Issues and Paradoxes regarding the Concept of Infinity: An Apos-Based Analysis: Part 1
This paper applies APOS Theory to suggest a new explanation of how people might think about the concept of infinity. We propose cognitive explanations, and in some cases resolutions, of various dichotomies, paradoxes, and mathematical problems involving the concept of infinity. These explanations ar...
Saved in:
Published in: | Educational studies in mathematics 2005-03, Vol.58 (3), p.335-359 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c237t-9d73dadb227dd8bf6d9b3a29a63d0f45521027f937f23eff921700474482f1c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c237t-9d73dadb227dd8bf6d9b3a29a63d0f45521027f937f23eff921700474482f1c33 |
container_end_page | 359 |
container_issue | 3 |
container_start_page | 335 |
container_title | Educational studies in mathematics |
container_volume | 58 |
creator | Dubinsky, Ed Weller, Kirk McDonald, Michael A. Brown, Anne |
description | This paper applies APOS Theory to suggest a new explanation of how people might think about the concept of infinity. We propose cognitive explanations, and in some cases resolutions, of various dichotomies, paradoxes, and mathematical problems involving the concept of infinity. These explanations are expressed in terms of the mental mechanisms of interiorization and encapsulation. Our purpose for providing a cognitive perspective is that issues involving the infinite have been and continue to be a source of interest, of controversy, and of student difficulty. We provide a cognitive analysis of these issues as a contribution to the discussion. In this paper, Part 1, we focus on dichotomies and paradoxes and, in Part 2, we will discuss the notion of an infinite process and certain mathematical issues related to the concept of infinity. |
doi_str_mv | 10.1007/s10649-005-2531-z |
format | article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_incontextgauss_ISR_A152541721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A152541721</galeid><ericid>EJ732539</ericid><jstor_id>25047157</jstor_id><sourcerecordid>A152541721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-9d73dadb227dd8bf6d9b3a29a63d0f45521027f937f23eff921700474482f1c33</originalsourceid><addsrcrecordid>eNo9kUFLAzEQhYMoWKs_QFDI1UN0Jtk0XW9rqbZSUKyeQ7pJ6pZ2t2y20PbXm2Wlp-Hx3huGbwi5RXhEAPUUEAZJygAk41IgO56RHkolGAxxcE56ACgYpjK5JFchrABgGGs94ufVxtFJEZqqLnKzptMQdi5QU1r6aWpjq31UtVua2hblkja_jo6qMnfbhlaeTktflEVzeKZZSbNtFdiLCc5GZdaHUITndklD8ZpceLMO7uZ_9snP6_h7NGGzj7fpKJuxnAvVsNQqYY1dcK6sHS78wKYLYXhqBsKCT6TkCFz5VCjPhfM-5agAEpUkQ-4xF6JPHrq9S7N2uijzqmzcvlmaXQh6Ov_SGUouE1QcYxa7bF5XIdTO621dbEx90Ai6hao7qDpC1S1UfYydu67jIq1TfvyuRAyk0b7v7FXL8-RzGW9sv_EH10975g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some Historical Issues and Paradoxes regarding the Concept of Infinity: An Apos-Based Analysis: Part 1</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Springer Nature</source><source>ERIC</source><creator>Dubinsky, Ed ; Weller, Kirk ; McDonald, Michael A. ; Brown, Anne</creator><creatorcontrib>Dubinsky, Ed ; Weller, Kirk ; McDonald, Michael A. ; Brown, Anne</creatorcontrib><description>This paper applies APOS Theory to suggest a new explanation of how people might think about the concept of infinity. We propose cognitive explanations, and in some cases resolutions, of various dichotomies, paradoxes, and mathematical problems involving the concept of infinity. These explanations are expressed in terms of the mental mechanisms of interiorization and encapsulation. Our purpose for providing a cognitive perspective is that issues involving the infinite have been and continue to be a source of interest, of controversy, and of student difficulty. We provide a cognitive analysis of these issues as a contribution to the discussion. In this paper, Part 1, we focus on dichotomies and paradoxes and, in Part 2, we will discuss the notion of an infinite process and certain mathematical issues related to the concept of infinity.</description><identifier>ISSN: 0013-1954</identifier><identifier>EISSN: 1573-0816</identifier><identifier>DOI: 10.1007/s10649-005-2531-z</identifier><language>eng</language><publisher>Springer</publisher><subject>Analysis ; Cognitive Processes ; Encapsulation ; Human information processing ; Infinite ; Infinite sets ; Infinity ; Logic ; Logical Thinking ; Mathematical Concepts ; Mathematical functions ; Mathematical objects ; Mathematical sets ; Mathematics ; Mathematics Education ; Natural numbers ; Paradox ; Paradoxes ; Polarity ; Study and teaching ; Tennis balls ; Word Problems (Mathematics)</subject><ispartof>Educational studies in mathematics, 2005-03, Vol.58 (3), p.335-359</ispartof><rights>Copyright 2005 Springer</rights><rights>COPYRIGHT 2005 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c237t-9d73dadb227dd8bf6d9b3a29a63d0f45521027f937f23eff921700474482f1c33</citedby><cites>FETCH-LOGICAL-c237t-9d73dadb227dd8bf6d9b3a29a63d0f45521027f937f23eff921700474482f1c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25047157$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25047157$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27898,27899,58210,58443</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ732539$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubinsky, Ed</creatorcontrib><creatorcontrib>Weller, Kirk</creatorcontrib><creatorcontrib>McDonald, Michael A.</creatorcontrib><creatorcontrib>Brown, Anne</creatorcontrib><title>Some Historical Issues and Paradoxes regarding the Concept of Infinity: An Apos-Based Analysis: Part 1</title><title>Educational studies in mathematics</title><description>This paper applies APOS Theory to suggest a new explanation of how people might think about the concept of infinity. We propose cognitive explanations, and in some cases resolutions, of various dichotomies, paradoxes, and mathematical problems involving the concept of infinity. These explanations are expressed in terms of the mental mechanisms of interiorization and encapsulation. Our purpose for providing a cognitive perspective is that issues involving the infinite have been and continue to be a source of interest, of controversy, and of student difficulty. We provide a cognitive analysis of these issues as a contribution to the discussion. In this paper, Part 1, we focus on dichotomies and paradoxes and, in Part 2, we will discuss the notion of an infinite process and certain mathematical issues related to the concept of infinity.</description><subject>Analysis</subject><subject>Cognitive Processes</subject><subject>Encapsulation</subject><subject>Human information processing</subject><subject>Infinite</subject><subject>Infinite sets</subject><subject>Infinity</subject><subject>Logic</subject><subject>Logical Thinking</subject><subject>Mathematical Concepts</subject><subject>Mathematical functions</subject><subject>Mathematical objects</subject><subject>Mathematical sets</subject><subject>Mathematics</subject><subject>Mathematics Education</subject><subject>Natural numbers</subject><subject>Paradox</subject><subject>Paradoxes</subject><subject>Polarity</subject><subject>Study and teaching</subject><subject>Tennis balls</subject><subject>Word Problems (Mathematics)</subject><issn>0013-1954</issn><issn>1573-0816</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNo9kUFLAzEQhYMoWKs_QFDI1UN0Jtk0XW9rqbZSUKyeQ7pJ6pZ2t2y20PbXm2Wlp-Hx3huGbwi5RXhEAPUUEAZJygAk41IgO56RHkolGAxxcE56ACgYpjK5JFchrABgGGs94ufVxtFJEZqqLnKzptMQdi5QU1r6aWpjq31UtVua2hblkja_jo6qMnfbhlaeTktflEVzeKZZSbNtFdiLCc5GZdaHUITndklD8ZpceLMO7uZ_9snP6_h7NGGzj7fpKJuxnAvVsNQqYY1dcK6sHS78wKYLYXhqBsKCT6TkCFz5VCjPhfM-5agAEpUkQ-4xF6JPHrq9S7N2uijzqmzcvlmaXQh6Ov_SGUouE1QcYxa7bF5XIdTO621dbEx90Ai6hao7qDpC1S1UfYydu67jIq1TfvyuRAyk0b7v7FXL8-RzGW9sv_EH10975g</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Dubinsky, Ed</creator><creator>Weller, Kirk</creator><creator>McDonald, Michael A.</creator><creator>Brown, Anne</creator><general>Springer</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>200503</creationdate><title>Some Historical Issues and Paradoxes regarding the Concept of Infinity: An Apos-Based Analysis: Part 1</title><author>Dubinsky, Ed ; Weller, Kirk ; McDonald, Michael A. ; Brown, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-9d73dadb227dd8bf6d9b3a29a63d0f45521027f937f23eff921700474482f1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Analysis</topic><topic>Cognitive Processes</topic><topic>Encapsulation</topic><topic>Human information processing</topic><topic>Infinite</topic><topic>Infinite sets</topic><topic>Infinity</topic><topic>Logic</topic><topic>Logical Thinking</topic><topic>Mathematical Concepts</topic><topic>Mathematical functions</topic><topic>Mathematical objects</topic><topic>Mathematical sets</topic><topic>Mathematics</topic><topic>Mathematics Education</topic><topic>Natural numbers</topic><topic>Paradox</topic><topic>Paradoxes</topic><topic>Polarity</topic><topic>Study and teaching</topic><topic>Tennis balls</topic><topic>Word Problems (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubinsky, Ed</creatorcontrib><creatorcontrib>Weller, Kirk</creatorcontrib><creatorcontrib>McDonald, Michael A.</creatorcontrib><creatorcontrib>Brown, Anne</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Educational studies in mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubinsky, Ed</au><au>Weller, Kirk</au><au>McDonald, Michael A.</au><au>Brown, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ732539</ericid><atitle>Some Historical Issues and Paradoxes regarding the Concept of Infinity: An Apos-Based Analysis: Part 1</atitle><jtitle>Educational studies in mathematics</jtitle><date>2005-03</date><risdate>2005</risdate><volume>58</volume><issue>3</issue><spage>335</spage><epage>359</epage><pages>335-359</pages><issn>0013-1954</issn><eissn>1573-0816</eissn><abstract>This paper applies APOS Theory to suggest a new explanation of how people might think about the concept of infinity. We propose cognitive explanations, and in some cases resolutions, of various dichotomies, paradoxes, and mathematical problems involving the concept of infinity. These explanations are expressed in terms of the mental mechanisms of interiorization and encapsulation. Our purpose for providing a cognitive perspective is that issues involving the infinite have been and continue to be a source of interest, of controversy, and of student difficulty. We provide a cognitive analysis of these issues as a contribution to the discussion. In this paper, Part 1, we focus on dichotomies and paradoxes and, in Part 2, we will discuss the notion of an infinite process and certain mathematical issues related to the concept of infinity.</abstract><pub>Springer</pub><doi>10.1007/s10649-005-2531-z</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-1954 |
ispartof | Educational studies in mathematics, 2005-03, Vol.58 (3), p.335-359 |
issn | 0013-1954 1573-0816 |
language | eng |
recordid | cdi_gale_incontextgauss_ISR_A152541721 |
source | JSTOR Archival Journals and Primary Sources Collection; Springer Nature; ERIC |
subjects | Analysis Cognitive Processes Encapsulation Human information processing Infinite Infinite sets Infinity Logic Logical Thinking Mathematical Concepts Mathematical functions Mathematical objects Mathematical sets Mathematics Mathematics Education Natural numbers Paradox Paradoxes Polarity Study and teaching Tennis balls Word Problems (Mathematics) |
title | Some Historical Issues and Paradoxes regarding the Concept of Infinity: An Apos-Based Analysis: Part 1 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T18%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Historical%20Issues%20and%20Paradoxes%20regarding%20the%20Concept%20of%20Infinity:%20An%20Apos-Based%20Analysis:%20Part%201&rft.jtitle=Educational%20studies%20in%20mathematics&rft.au=Dubinsky,%20Ed&rft.date=2005-03&rft.volume=58&rft.issue=3&rft.spage=335&rft.epage=359&rft.pages=335-359&rft.issn=0013-1954&rft.eissn=1573-0816&rft_id=info:doi/10.1007/s10649-005-2531-z&rft_dat=%3Cgale_cross%3EA152541721%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c237t-9d73dadb227dd8bf6d9b3a29a63d0f45521027f937f23eff921700474482f1c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A152541721&rft_ericid=EJ732539&rft_jstor_id=25047157&rfr_iscdi=true |