Loading…

Some Historical Issues and Paradoxes regarding the Concept of Infinity: An Apos-Based Analysis: Part 1

This paper applies APOS Theory to suggest a new explanation of how people might think about the concept of infinity. We propose cognitive explanations, and in some cases resolutions, of various dichotomies, paradoxes, and mathematical problems involving the concept of infinity. These explanations ar...

Full description

Saved in:
Bibliographic Details
Published in:Educational studies in mathematics 2005-03, Vol.58 (3), p.335-359
Main Authors: Dubinsky, Ed, Weller, Kirk, McDonald, Michael A., Brown, Anne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c237t-9d73dadb227dd8bf6d9b3a29a63d0f45521027f937f23eff921700474482f1c33
cites cdi_FETCH-LOGICAL-c237t-9d73dadb227dd8bf6d9b3a29a63d0f45521027f937f23eff921700474482f1c33
container_end_page 359
container_issue 3
container_start_page 335
container_title Educational studies in mathematics
container_volume 58
creator Dubinsky, Ed
Weller, Kirk
McDonald, Michael A.
Brown, Anne
description This paper applies APOS Theory to suggest a new explanation of how people might think about the concept of infinity. We propose cognitive explanations, and in some cases resolutions, of various dichotomies, paradoxes, and mathematical problems involving the concept of infinity. These explanations are expressed in terms of the mental mechanisms of interiorization and encapsulation. Our purpose for providing a cognitive perspective is that issues involving the infinite have been and continue to be a source of interest, of controversy, and of student difficulty. We provide a cognitive analysis of these issues as a contribution to the discussion. In this paper, Part 1, we focus on dichotomies and paradoxes and, in Part 2, we will discuss the notion of an infinite process and certain mathematical issues related to the concept of infinity.
doi_str_mv 10.1007/s10649-005-2531-z
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_incontextgauss_ISR_A152541721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A152541721</galeid><ericid>EJ732539</ericid><jstor_id>25047157</jstor_id><sourcerecordid>A152541721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-9d73dadb227dd8bf6d9b3a29a63d0f45521027f937f23eff921700474482f1c33</originalsourceid><addsrcrecordid>eNo9kUFLAzEQhYMoWKs_QFDI1UN0Jtk0XW9rqbZSUKyeQ7pJ6pZ2t2y20PbXm2Wlp-Hx3huGbwi5RXhEAPUUEAZJygAk41IgO56RHkolGAxxcE56ACgYpjK5JFchrABgGGs94ufVxtFJEZqqLnKzptMQdi5QU1r6aWpjq31UtVua2hblkja_jo6qMnfbhlaeTktflEVzeKZZSbNtFdiLCc5GZdaHUITndklD8ZpceLMO7uZ_9snP6_h7NGGzj7fpKJuxnAvVsNQqYY1dcK6sHS78wKYLYXhqBsKCT6TkCFz5VCjPhfM-5agAEpUkQ-4xF6JPHrq9S7N2uijzqmzcvlmaXQh6Ov_SGUouE1QcYxa7bF5XIdTO621dbEx90Ai6hao7qDpC1S1UfYydu67jIq1TfvyuRAyk0b7v7FXL8-RzGW9sv_EH10975g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some Historical Issues and Paradoxes regarding the Concept of Infinity: An Apos-Based Analysis: Part 1</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Springer Nature</source><source>ERIC</source><creator>Dubinsky, Ed ; Weller, Kirk ; McDonald, Michael A. ; Brown, Anne</creator><creatorcontrib>Dubinsky, Ed ; Weller, Kirk ; McDonald, Michael A. ; Brown, Anne</creatorcontrib><description>This paper applies APOS Theory to suggest a new explanation of how people might think about the concept of infinity. We propose cognitive explanations, and in some cases resolutions, of various dichotomies, paradoxes, and mathematical problems involving the concept of infinity. These explanations are expressed in terms of the mental mechanisms of interiorization and encapsulation. Our purpose for providing a cognitive perspective is that issues involving the infinite have been and continue to be a source of interest, of controversy, and of student difficulty. We provide a cognitive analysis of these issues as a contribution to the discussion. In this paper, Part 1, we focus on dichotomies and paradoxes and, in Part 2, we will discuss the notion of an infinite process and certain mathematical issues related to the concept of infinity.</description><identifier>ISSN: 0013-1954</identifier><identifier>EISSN: 1573-0816</identifier><identifier>DOI: 10.1007/s10649-005-2531-z</identifier><language>eng</language><publisher>Springer</publisher><subject>Analysis ; Cognitive Processes ; Encapsulation ; Human information processing ; Infinite ; Infinite sets ; Infinity ; Logic ; Logical Thinking ; Mathematical Concepts ; Mathematical functions ; Mathematical objects ; Mathematical sets ; Mathematics ; Mathematics Education ; Natural numbers ; Paradox ; Paradoxes ; Polarity ; Study and teaching ; Tennis balls ; Word Problems (Mathematics)</subject><ispartof>Educational studies in mathematics, 2005-03, Vol.58 (3), p.335-359</ispartof><rights>Copyright 2005 Springer</rights><rights>COPYRIGHT 2005 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c237t-9d73dadb227dd8bf6d9b3a29a63d0f45521027f937f23eff921700474482f1c33</citedby><cites>FETCH-LOGICAL-c237t-9d73dadb227dd8bf6d9b3a29a63d0f45521027f937f23eff921700474482f1c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25047157$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25047157$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27898,27899,58210,58443</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ732539$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubinsky, Ed</creatorcontrib><creatorcontrib>Weller, Kirk</creatorcontrib><creatorcontrib>McDonald, Michael A.</creatorcontrib><creatorcontrib>Brown, Anne</creatorcontrib><title>Some Historical Issues and Paradoxes regarding the Concept of Infinity: An Apos-Based Analysis: Part 1</title><title>Educational studies in mathematics</title><description>This paper applies APOS Theory to suggest a new explanation of how people might think about the concept of infinity. We propose cognitive explanations, and in some cases resolutions, of various dichotomies, paradoxes, and mathematical problems involving the concept of infinity. These explanations are expressed in terms of the mental mechanisms of interiorization and encapsulation. Our purpose for providing a cognitive perspective is that issues involving the infinite have been and continue to be a source of interest, of controversy, and of student difficulty. We provide a cognitive analysis of these issues as a contribution to the discussion. In this paper, Part 1, we focus on dichotomies and paradoxes and, in Part 2, we will discuss the notion of an infinite process and certain mathematical issues related to the concept of infinity.</description><subject>Analysis</subject><subject>Cognitive Processes</subject><subject>Encapsulation</subject><subject>Human information processing</subject><subject>Infinite</subject><subject>Infinite sets</subject><subject>Infinity</subject><subject>Logic</subject><subject>Logical Thinking</subject><subject>Mathematical Concepts</subject><subject>Mathematical functions</subject><subject>Mathematical objects</subject><subject>Mathematical sets</subject><subject>Mathematics</subject><subject>Mathematics Education</subject><subject>Natural numbers</subject><subject>Paradox</subject><subject>Paradoxes</subject><subject>Polarity</subject><subject>Study and teaching</subject><subject>Tennis balls</subject><subject>Word Problems (Mathematics)</subject><issn>0013-1954</issn><issn>1573-0816</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNo9kUFLAzEQhYMoWKs_QFDI1UN0Jtk0XW9rqbZSUKyeQ7pJ6pZ2t2y20PbXm2Wlp-Hx3huGbwi5RXhEAPUUEAZJygAk41IgO56RHkolGAxxcE56ACgYpjK5JFchrABgGGs94ufVxtFJEZqqLnKzptMQdi5QU1r6aWpjq31UtVua2hblkja_jo6qMnfbhlaeTktflEVzeKZZSbNtFdiLCc5GZdaHUITndklD8ZpceLMO7uZ_9snP6_h7NGGzj7fpKJuxnAvVsNQqYY1dcK6sHS78wKYLYXhqBsKCT6TkCFz5VCjPhfM-5agAEpUkQ-4xF6JPHrq9S7N2uijzqmzcvlmaXQh6Ov_SGUouE1QcYxa7bF5XIdTO621dbEx90Ai6hao7qDpC1S1UfYydu67jIq1TfvyuRAyk0b7v7FXL8-RzGW9sv_EH10975g</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Dubinsky, Ed</creator><creator>Weller, Kirk</creator><creator>McDonald, Michael A.</creator><creator>Brown, Anne</creator><general>Springer</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>200503</creationdate><title>Some Historical Issues and Paradoxes regarding the Concept of Infinity: An Apos-Based Analysis: Part 1</title><author>Dubinsky, Ed ; Weller, Kirk ; McDonald, Michael A. ; Brown, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-9d73dadb227dd8bf6d9b3a29a63d0f45521027f937f23eff921700474482f1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Analysis</topic><topic>Cognitive Processes</topic><topic>Encapsulation</topic><topic>Human information processing</topic><topic>Infinite</topic><topic>Infinite sets</topic><topic>Infinity</topic><topic>Logic</topic><topic>Logical Thinking</topic><topic>Mathematical Concepts</topic><topic>Mathematical functions</topic><topic>Mathematical objects</topic><topic>Mathematical sets</topic><topic>Mathematics</topic><topic>Mathematics Education</topic><topic>Natural numbers</topic><topic>Paradox</topic><topic>Paradoxes</topic><topic>Polarity</topic><topic>Study and teaching</topic><topic>Tennis balls</topic><topic>Word Problems (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubinsky, Ed</creatorcontrib><creatorcontrib>Weller, Kirk</creatorcontrib><creatorcontrib>McDonald, Michael A.</creatorcontrib><creatorcontrib>Brown, Anne</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Educational studies in mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubinsky, Ed</au><au>Weller, Kirk</au><au>McDonald, Michael A.</au><au>Brown, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ732539</ericid><atitle>Some Historical Issues and Paradoxes regarding the Concept of Infinity: An Apos-Based Analysis: Part 1</atitle><jtitle>Educational studies in mathematics</jtitle><date>2005-03</date><risdate>2005</risdate><volume>58</volume><issue>3</issue><spage>335</spage><epage>359</epage><pages>335-359</pages><issn>0013-1954</issn><eissn>1573-0816</eissn><abstract>This paper applies APOS Theory to suggest a new explanation of how people might think about the concept of infinity. We propose cognitive explanations, and in some cases resolutions, of various dichotomies, paradoxes, and mathematical problems involving the concept of infinity. These explanations are expressed in terms of the mental mechanisms of interiorization and encapsulation. Our purpose for providing a cognitive perspective is that issues involving the infinite have been and continue to be a source of interest, of controversy, and of student difficulty. We provide a cognitive analysis of these issues as a contribution to the discussion. In this paper, Part 1, we focus on dichotomies and paradoxes and, in Part 2, we will discuss the notion of an infinite process and certain mathematical issues related to the concept of infinity.</abstract><pub>Springer</pub><doi>10.1007/s10649-005-2531-z</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-1954
ispartof Educational studies in mathematics, 2005-03, Vol.58 (3), p.335-359
issn 0013-1954
1573-0816
language eng
recordid cdi_gale_incontextgauss_ISR_A152541721
source JSTOR Archival Journals and Primary Sources Collection; Springer Nature; ERIC
subjects Analysis
Cognitive Processes
Encapsulation
Human information processing
Infinite
Infinite sets
Infinity
Logic
Logical Thinking
Mathematical Concepts
Mathematical functions
Mathematical objects
Mathematical sets
Mathematics
Mathematics Education
Natural numbers
Paradox
Paradoxes
Polarity
Study and teaching
Tennis balls
Word Problems (Mathematics)
title Some Historical Issues and Paradoxes regarding the Concept of Infinity: An Apos-Based Analysis: Part 1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T18%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Historical%20Issues%20and%20Paradoxes%20regarding%20the%20Concept%20of%20Infinity:%20An%20Apos-Based%20Analysis:%20Part%201&rft.jtitle=Educational%20studies%20in%20mathematics&rft.au=Dubinsky,%20Ed&rft.date=2005-03&rft.volume=58&rft.issue=3&rft.spage=335&rft.epage=359&rft.pages=335-359&rft.issn=0013-1954&rft.eissn=1573-0816&rft_id=info:doi/10.1007/s10649-005-2531-z&rft_dat=%3Cgale_cross%3EA152541721%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c237t-9d73dadb227dd8bf6d9b3a29a63d0f45521027f937f23eff921700474482f1c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A152541721&rft_ericid=EJ732539&rft_jstor_id=25047157&rfr_iscdi=true