Loading…
Computable Error Bounds of Laplace Inversion for Pricing Asian Options
The prices of Asian options, which are among the most important options in financial engineering, can often be written in terms of Laplace transforms. However, computable error bounds of the Laplace inversions are rarely available to guarantee their accuracy. We conduct a thorough analysis of the in...
Saved in:
Published in: | INFORMS journal on computing 2018-09, Vol.30 (4), p.634-645 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c510t-7d5da85bceae18b76386131c9d205180bd865cbb28cf9609b24fc172de2a90813 |
---|---|
cites | cdi_FETCH-LOGICAL-c510t-7d5da85bceae18b76386131c9d205180bd865cbb28cf9609b24fc172de2a90813 |
container_end_page | 645 |
container_issue | 4 |
container_start_page | 634 |
container_title | INFORMS journal on computing |
container_volume | 30 |
creator | Song, Yingda Cai, Ning Kou, Steven |
description | The prices of Asian options, which are among the most important options in financial engineering, can often be written in terms of Laplace transforms. However, computable error bounds of the Laplace inversions are rarely available to guarantee their accuracy. We conduct a thorough analysis of the inversion of the Laplace transforms for continuously and discretely monitored Asian option prices under general continuous-time Markov chains (CTMCs), which can be used to approximate any one-dimensional Markov process. More precisely, we derive
computable
bounds for the discretization and truncation errors involved in the inversion of Laplace transforms. Numerical results indicate that the algorithm is fast and easy to implement, and the computable error bounds are especially suitable to provide benchmark prices under CTMCs.
The online supplement is available at
https://doi.org/10.1287/ijoc.2017.0805
. |
doi_str_mv | 10.1287/ijoc.2017.0805 |
format | article |
fullrecord | <record><control><sourceid>gale_infor</sourceid><recordid>TN_cdi_gale_incontextgauss__A569756393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A569756393</galeid><sourcerecordid>A569756393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-7d5da85bceae18b76386131c9d205180bd865cbb28cf9609b24fc172de2a90813</originalsourceid><addsrcrecordid>eNqFkk1r3DAQhk1poekm154NgZ5iR5JXX8ftkm0CC8mhOQtZll0ttuRo7JD--8qkkCwsBIE0zDzvzAjeLPuOUYmJ4NfuEExJEOYlEoh-ys4wJayglIjPKUYSF1JQ9jX7BnBACK2rtTzLdtswjPOk697mNzGGmP8Ms28gD22-12Ovjc3v_LON4ILP21R_iM443-UbcNrn9-OUCnCefWl1D_bi_7vKHnc3v7e3xf7-1912sy8MxWgqeEMbLWhtrLZY1JxVguEKG9kQRLFAdSMYNXVNhGklQ7Im69ZgThpLtEQCV6vs8rXvGMPTbGFShzBHn0YqgumaI84ZeaM63VvlfBumqM3gwKgNZZJTVskqUcUJqrPeRt0Hb1uX0kd8eYJPp7GDMycFP44EiZnsy9TpGUAdg1fvwHoG5y2kC1z3Z4JX_tQiJgaAaFs1Rjfo-FdhpBYrqMUKarGCWqzw9tNl6TjAR_w_PcKyMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154707762</pqid></control><display><type>article</type><title>Computable Error Bounds of Laplace Inversion for Pricing Asian Options</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><creator>Song, Yingda ; Cai, Ning ; Kou, Steven</creator><creatorcontrib>Song, Yingda ; Cai, Ning ; Kou, Steven</creatorcontrib><description>The prices of Asian options, which are among the most important options in financial engineering, can often be written in terms of Laplace transforms. However, computable error bounds of the Laplace inversions are rarely available to guarantee their accuracy. We conduct a thorough analysis of the inversion of the Laplace transforms for continuously and discretely monitored Asian option prices under general continuous-time Markov chains (CTMCs), which can be used to approximate any one-dimensional Markov process. More precisely, we derive
computable
bounds for the discretization and truncation errors involved in the inversion of Laplace transforms. Numerical results indicate that the algorithm is fast and easy to implement, and the computable error bounds are especially suitable to provide benchmark prices under CTMCs.
The online supplement is available at
https://doi.org/10.1287/ijoc.2017.0805
.</description><identifier>ISSN: 1091-9856</identifier><identifier>EISSN: 1526-5528</identifier><identifier>EISSN: 1091-9856</identifier><identifier>DOI: 10.1287/ijoc.2017.0805</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Approximation ; continuous-time Markov chains ; continuously monitored Asian options ; discretely monitored Asian options ; Errors ; Inverse problems ; Inversions ; Laplace inversion ; Laplace transformation ; Laplace transforms ; Markov chains ; Markov processes ; Prices and rates ; Securities prices ; Stock options ; Stocks ; Truncation errors</subject><ispartof>INFORMS journal on computing, 2018-09, Vol.30 (4), p.634-645</ispartof><rights>COPYRIGHT 2018 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Fall 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-7d5da85bceae18b76386131c9d205180bd865cbb28cf9609b24fc172de2a90813</citedby><cites>FETCH-LOGICAL-c510t-7d5da85bceae18b76386131c9d205180bd865cbb28cf9609b24fc172de2a90813</cites><orcidid>0000-0002-2184-4697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Song, Yingda</creatorcontrib><creatorcontrib>Cai, Ning</creatorcontrib><creatorcontrib>Kou, Steven</creatorcontrib><title>Computable Error Bounds of Laplace Inversion for Pricing Asian Options</title><title>INFORMS journal on computing</title><description>The prices of Asian options, which are among the most important options in financial engineering, can often be written in terms of Laplace transforms. However, computable error bounds of the Laplace inversions are rarely available to guarantee their accuracy. We conduct a thorough analysis of the inversion of the Laplace transforms for continuously and discretely monitored Asian option prices under general continuous-time Markov chains (CTMCs), which can be used to approximate any one-dimensional Markov process. More precisely, we derive
computable
bounds for the discretization and truncation errors involved in the inversion of Laplace transforms. Numerical results indicate that the algorithm is fast and easy to implement, and the computable error bounds are especially suitable to provide benchmark prices under CTMCs.
The online supplement is available at
https://doi.org/10.1287/ijoc.2017.0805
.</description><subject>Approximation</subject><subject>continuous-time Markov chains</subject><subject>continuously monitored Asian options</subject><subject>discretely monitored Asian options</subject><subject>Errors</subject><subject>Inverse problems</subject><subject>Inversions</subject><subject>Laplace inversion</subject><subject>Laplace transformation</subject><subject>Laplace transforms</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Prices and rates</subject><subject>Securities prices</subject><subject>Stock options</subject><subject>Stocks</subject><subject>Truncation errors</subject><issn>1091-9856</issn><issn>1526-5528</issn><issn>1091-9856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkk1r3DAQhk1poekm154NgZ5iR5JXX8ftkm0CC8mhOQtZll0ttuRo7JD--8qkkCwsBIE0zDzvzAjeLPuOUYmJ4NfuEExJEOYlEoh-ys4wJayglIjPKUYSF1JQ9jX7BnBACK2rtTzLdtswjPOk697mNzGGmP8Ms28gD22-12Ovjc3v_LON4ILP21R_iM443-UbcNrn9-OUCnCefWl1D_bi_7vKHnc3v7e3xf7-1912sy8MxWgqeEMbLWhtrLZY1JxVguEKG9kQRLFAdSMYNXVNhGklQ7Im69ZgThpLtEQCV6vs8rXvGMPTbGFShzBHn0YqgumaI84ZeaM63VvlfBumqM3gwKgNZZJTVskqUcUJqrPeRt0Hb1uX0kd8eYJPp7GDMycFP44EiZnsy9TpGUAdg1fvwHoG5y2kC1z3Z4JX_tQiJgaAaFs1Rjfo-FdhpBYrqMUKarGCWqzw9tNl6TjAR_w_PcKyMw</recordid><startdate>20180922</startdate><enddate>20180922</enddate><creator>Song, Yingda</creator><creator>Cai, Ning</creator><creator>Kou, Steven</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-2184-4697</orcidid></search><sort><creationdate>20180922</creationdate><title>Computable Error Bounds of Laplace Inversion for Pricing Asian Options</title><author>Song, Yingda ; Cai, Ning ; Kou, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-7d5da85bceae18b76386131c9d205180bd865cbb28cf9609b24fc172de2a90813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>continuous-time Markov chains</topic><topic>continuously monitored Asian options</topic><topic>discretely monitored Asian options</topic><topic>Errors</topic><topic>Inverse problems</topic><topic>Inversions</topic><topic>Laplace inversion</topic><topic>Laplace transformation</topic><topic>Laplace transforms</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Prices and rates</topic><topic>Securities prices</topic><topic>Stock options</topic><topic>Stocks</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yingda</creatorcontrib><creatorcontrib>Cai, Ning</creatorcontrib><creatorcontrib>Kou, Steven</creatorcontrib><collection>CrossRef</collection><collection>Gale Business Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Computer Science Collection</collection><jtitle>INFORMS journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yingda</au><au>Cai, Ning</au><au>Kou, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computable Error Bounds of Laplace Inversion for Pricing Asian Options</atitle><jtitle>INFORMS journal on computing</jtitle><date>2018-09-22</date><risdate>2018</risdate><volume>30</volume><issue>4</issue><spage>634</spage><epage>645</epage><pages>634-645</pages><issn>1091-9856</issn><eissn>1526-5528</eissn><eissn>1091-9856</eissn><abstract>The prices of Asian options, which are among the most important options in financial engineering, can often be written in terms of Laplace transforms. However, computable error bounds of the Laplace inversions are rarely available to guarantee their accuracy. We conduct a thorough analysis of the inversion of the Laplace transforms for continuously and discretely monitored Asian option prices under general continuous-time Markov chains (CTMCs), which can be used to approximate any one-dimensional Markov process. More precisely, we derive
computable
bounds for the discretization and truncation errors involved in the inversion of Laplace transforms. Numerical results indicate that the algorithm is fast and easy to implement, and the computable error bounds are especially suitable to provide benchmark prices under CTMCs.
The online supplement is available at
https://doi.org/10.1287/ijoc.2017.0805
.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/ijoc.2017.0805</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2184-4697</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1091-9856 |
ispartof | INFORMS journal on computing, 2018-09, Vol.30 (4), p.634-645 |
issn | 1091-9856 1526-5528 1091-9856 |
language | eng |
recordid | cdi_gale_incontextgauss__A569756393 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】 |
subjects | Approximation continuous-time Markov chains continuously monitored Asian options discretely monitored Asian options Errors Inverse problems Inversions Laplace inversion Laplace transformation Laplace transforms Markov chains Markov processes Prices and rates Securities prices Stock options Stocks Truncation errors |
title | Computable Error Bounds of Laplace Inversion for Pricing Asian Options |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computable%20Error%20Bounds%20of%20Laplace%20Inversion%20for%20Pricing%20Asian%20Options&rft.jtitle=INFORMS%20journal%20on%20computing&rft.au=Song,%20Yingda&rft.date=2018-09-22&rft.volume=30&rft.issue=4&rft.spage=634&rft.epage=645&rft.pages=634-645&rft.issn=1091-9856&rft.eissn=1526-5528&rft_id=info:doi/10.1287/ijoc.2017.0805&rft_dat=%3Cgale_infor%3EA569756393%3C/gale_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-7d5da85bceae18b76386131c9d205180bd865cbb28cf9609b24fc172de2a90813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2154707762&rft_id=info:pmid/&rft_galeid=A569756393&rfr_iscdi=true |