Loading…

Computable Error Bounds of Laplace Inversion for Pricing Asian Options

The prices of Asian options, which are among the most important options in financial engineering, can often be written in terms of Laplace transforms. However, computable error bounds of the Laplace inversions are rarely available to guarantee their accuracy. We conduct a thorough analysis of the in...

Full description

Saved in:
Bibliographic Details
Published in:INFORMS journal on computing 2018-09, Vol.30 (4), p.634-645
Main Authors: Song, Yingda, Cai, Ning, Kou, Steven
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c510t-7d5da85bceae18b76386131c9d205180bd865cbb28cf9609b24fc172de2a90813
cites cdi_FETCH-LOGICAL-c510t-7d5da85bceae18b76386131c9d205180bd865cbb28cf9609b24fc172de2a90813
container_end_page 645
container_issue 4
container_start_page 634
container_title INFORMS journal on computing
container_volume 30
creator Song, Yingda
Cai, Ning
Kou, Steven
description The prices of Asian options, which are among the most important options in financial engineering, can often be written in terms of Laplace transforms. However, computable error bounds of the Laplace inversions are rarely available to guarantee their accuracy. We conduct a thorough analysis of the inversion of the Laplace transforms for continuously and discretely monitored Asian option prices under general continuous-time Markov chains (CTMCs), which can be used to approximate any one-dimensional Markov process. More precisely, we derive computable bounds for the discretization and truncation errors involved in the inversion of Laplace transforms. Numerical results indicate that the algorithm is fast and easy to implement, and the computable error bounds are especially suitable to provide benchmark prices under CTMCs. The online supplement is available at https://doi.org/10.1287/ijoc.2017.0805 .
doi_str_mv 10.1287/ijoc.2017.0805
format article
fullrecord <record><control><sourceid>gale_infor</sourceid><recordid>TN_cdi_gale_incontextgauss__A569756393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A569756393</galeid><sourcerecordid>A569756393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-7d5da85bceae18b76386131c9d205180bd865cbb28cf9609b24fc172de2a90813</originalsourceid><addsrcrecordid>eNqFkk1r3DAQhk1poekm154NgZ5iR5JXX8ftkm0CC8mhOQtZll0ttuRo7JD--8qkkCwsBIE0zDzvzAjeLPuOUYmJ4NfuEExJEOYlEoh-ys4wJayglIjPKUYSF1JQ9jX7BnBACK2rtTzLdtswjPOk697mNzGGmP8Ms28gD22-12Ovjc3v_LON4ILP21R_iM443-UbcNrn9-OUCnCefWl1D_bi_7vKHnc3v7e3xf7-1912sy8MxWgqeEMbLWhtrLZY1JxVguEKG9kQRLFAdSMYNXVNhGklQ7Im69ZgThpLtEQCV6vs8rXvGMPTbGFShzBHn0YqgumaI84ZeaM63VvlfBumqM3gwKgNZZJTVskqUcUJqrPeRt0Hb1uX0kd8eYJPp7GDMycFP44EiZnsy9TpGUAdg1fvwHoG5y2kC1z3Z4JX_tQiJgaAaFs1Rjfo-FdhpBYrqMUKarGCWqzw9tNl6TjAR_w_PcKyMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154707762</pqid></control><display><type>article</type><title>Computable Error Bounds of Laplace Inversion for Pricing Asian Options</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><creator>Song, Yingda ; Cai, Ning ; Kou, Steven</creator><creatorcontrib>Song, Yingda ; Cai, Ning ; Kou, Steven</creatorcontrib><description>The prices of Asian options, which are among the most important options in financial engineering, can often be written in terms of Laplace transforms. However, computable error bounds of the Laplace inversions are rarely available to guarantee their accuracy. We conduct a thorough analysis of the inversion of the Laplace transforms for continuously and discretely monitored Asian option prices under general continuous-time Markov chains (CTMCs), which can be used to approximate any one-dimensional Markov process. More precisely, we derive computable bounds for the discretization and truncation errors involved in the inversion of Laplace transforms. Numerical results indicate that the algorithm is fast and easy to implement, and the computable error bounds are especially suitable to provide benchmark prices under CTMCs. The online supplement is available at https://doi.org/10.1287/ijoc.2017.0805 .</description><identifier>ISSN: 1091-9856</identifier><identifier>EISSN: 1526-5528</identifier><identifier>EISSN: 1091-9856</identifier><identifier>DOI: 10.1287/ijoc.2017.0805</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Approximation ; continuous-time Markov chains ; continuously monitored Asian options ; discretely monitored Asian options ; Errors ; Inverse problems ; Inversions ; Laplace inversion ; Laplace transformation ; Laplace transforms ; Markov chains ; Markov processes ; Prices and rates ; Securities prices ; Stock options ; Stocks ; Truncation errors</subject><ispartof>INFORMS journal on computing, 2018-09, Vol.30 (4), p.634-645</ispartof><rights>COPYRIGHT 2018 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Fall 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-7d5da85bceae18b76386131c9d205180bd865cbb28cf9609b24fc172de2a90813</citedby><cites>FETCH-LOGICAL-c510t-7d5da85bceae18b76386131c9d205180bd865cbb28cf9609b24fc172de2a90813</cites><orcidid>0000-0002-2184-4697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Song, Yingda</creatorcontrib><creatorcontrib>Cai, Ning</creatorcontrib><creatorcontrib>Kou, Steven</creatorcontrib><title>Computable Error Bounds of Laplace Inversion for Pricing Asian Options</title><title>INFORMS journal on computing</title><description>The prices of Asian options, which are among the most important options in financial engineering, can often be written in terms of Laplace transforms. However, computable error bounds of the Laplace inversions are rarely available to guarantee their accuracy. We conduct a thorough analysis of the inversion of the Laplace transforms for continuously and discretely monitored Asian option prices under general continuous-time Markov chains (CTMCs), which can be used to approximate any one-dimensional Markov process. More precisely, we derive computable bounds for the discretization and truncation errors involved in the inversion of Laplace transforms. Numerical results indicate that the algorithm is fast and easy to implement, and the computable error bounds are especially suitable to provide benchmark prices under CTMCs. The online supplement is available at https://doi.org/10.1287/ijoc.2017.0805 .</description><subject>Approximation</subject><subject>continuous-time Markov chains</subject><subject>continuously monitored Asian options</subject><subject>discretely monitored Asian options</subject><subject>Errors</subject><subject>Inverse problems</subject><subject>Inversions</subject><subject>Laplace inversion</subject><subject>Laplace transformation</subject><subject>Laplace transforms</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Prices and rates</subject><subject>Securities prices</subject><subject>Stock options</subject><subject>Stocks</subject><subject>Truncation errors</subject><issn>1091-9856</issn><issn>1526-5528</issn><issn>1091-9856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkk1r3DAQhk1poekm154NgZ5iR5JXX8ftkm0CC8mhOQtZll0ttuRo7JD--8qkkCwsBIE0zDzvzAjeLPuOUYmJ4NfuEExJEOYlEoh-ys4wJayglIjPKUYSF1JQ9jX7BnBACK2rtTzLdtswjPOk697mNzGGmP8Ms28gD22-12Ovjc3v_LON4ILP21R_iM443-UbcNrn9-OUCnCefWl1D_bi_7vKHnc3v7e3xf7-1912sy8MxWgqeEMbLWhtrLZY1JxVguEKG9kQRLFAdSMYNXVNhGklQ7Im69ZgThpLtEQCV6vs8rXvGMPTbGFShzBHn0YqgumaI84ZeaM63VvlfBumqM3gwKgNZZJTVskqUcUJqrPeRt0Hb1uX0kd8eYJPp7GDMycFP44EiZnsy9TpGUAdg1fvwHoG5y2kC1z3Z4JX_tQiJgaAaFs1Rjfo-FdhpBYrqMUKarGCWqzw9tNl6TjAR_w_PcKyMw</recordid><startdate>20180922</startdate><enddate>20180922</enddate><creator>Song, Yingda</creator><creator>Cai, Ning</creator><creator>Kou, Steven</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-2184-4697</orcidid></search><sort><creationdate>20180922</creationdate><title>Computable Error Bounds of Laplace Inversion for Pricing Asian Options</title><author>Song, Yingda ; Cai, Ning ; Kou, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-7d5da85bceae18b76386131c9d205180bd865cbb28cf9609b24fc172de2a90813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>continuous-time Markov chains</topic><topic>continuously monitored Asian options</topic><topic>discretely monitored Asian options</topic><topic>Errors</topic><topic>Inverse problems</topic><topic>Inversions</topic><topic>Laplace inversion</topic><topic>Laplace transformation</topic><topic>Laplace transforms</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Prices and rates</topic><topic>Securities prices</topic><topic>Stock options</topic><topic>Stocks</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yingda</creatorcontrib><creatorcontrib>Cai, Ning</creatorcontrib><creatorcontrib>Kou, Steven</creatorcontrib><collection>CrossRef</collection><collection>Gale Business Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Computer Science Collection</collection><jtitle>INFORMS journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yingda</au><au>Cai, Ning</au><au>Kou, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computable Error Bounds of Laplace Inversion for Pricing Asian Options</atitle><jtitle>INFORMS journal on computing</jtitle><date>2018-09-22</date><risdate>2018</risdate><volume>30</volume><issue>4</issue><spage>634</spage><epage>645</epage><pages>634-645</pages><issn>1091-9856</issn><eissn>1526-5528</eissn><eissn>1091-9856</eissn><abstract>The prices of Asian options, which are among the most important options in financial engineering, can often be written in terms of Laplace transforms. However, computable error bounds of the Laplace inversions are rarely available to guarantee their accuracy. We conduct a thorough analysis of the inversion of the Laplace transforms for continuously and discretely monitored Asian option prices under general continuous-time Markov chains (CTMCs), which can be used to approximate any one-dimensional Markov process. More precisely, we derive computable bounds for the discretization and truncation errors involved in the inversion of Laplace transforms. Numerical results indicate that the algorithm is fast and easy to implement, and the computable error bounds are especially suitable to provide benchmark prices under CTMCs. The online supplement is available at https://doi.org/10.1287/ijoc.2017.0805 .</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/ijoc.2017.0805</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2184-4697</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1091-9856
ispartof INFORMS journal on computing, 2018-09, Vol.30 (4), p.634-645
issn 1091-9856
1526-5528
1091-9856
language eng
recordid cdi_gale_incontextgauss__A569756393
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】
subjects Approximation
continuous-time Markov chains
continuously monitored Asian options
discretely monitored Asian options
Errors
Inverse problems
Inversions
Laplace inversion
Laplace transformation
Laplace transforms
Markov chains
Markov processes
Prices and rates
Securities prices
Stock options
Stocks
Truncation errors
title Computable Error Bounds of Laplace Inversion for Pricing Asian Options
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computable%20Error%20Bounds%20of%20Laplace%20Inversion%20for%20Pricing%20Asian%20Options&rft.jtitle=INFORMS%20journal%20on%20computing&rft.au=Song,%20Yingda&rft.date=2018-09-22&rft.volume=30&rft.issue=4&rft.spage=634&rft.epage=645&rft.pages=634-645&rft.issn=1091-9856&rft.eissn=1526-5528&rft_id=info:doi/10.1287/ijoc.2017.0805&rft_dat=%3Cgale_infor%3EA569756393%3C/gale_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-7d5da85bceae18b76386131c9d205180bd865cbb28cf9609b24fc172de2a90813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2154707762&rft_id=info:pmid/&rft_galeid=A569756393&rfr_iscdi=true