Loading…
An elementary quantum network of single atoms in optical cavities
Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded...
Saved in:
Published in: | Nature 2012, Vol.484 (7393), p.195 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Report |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 7393 |
container_start_page | 195 |
container_title | Nature |
container_volume | 484 |
creator | Ritter, Stephan Nolleke, Christian Hahn, Carolin Reiserer, Andreas Neuzner, Andreas Uphoff, Manuel Mucke, Ma Figueroa, Eden Bochmann, Joerg Rempe, Gerhard |
description | Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way--by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications. |
doi_str_mv | 10.1038/nature11023 |
format | report |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A287749974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A287749974</galeid><sourcerecordid>A287749974</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A2877499743</originalsourceid><addsrcrecordid>eNqVi0sKwjAQQLNQsH5WXmAuoE7aauuyiOIB3MsQpyWaTrRJFW-vCy8gb_HgwVNqrnGpMStXQrHvWGtMs4FKENNygWW2GalxCFdEXOsiT1RVCbDjliVS94ZHTxL7FoTjy3c38DUEK41joOjbAFbA36M15MDQ00bLYaqGNbnAs58nannYn3bHRUOOz1ZqHzsyXy7cWuOFa_vtVVoWRb7dFnn29_ABFUNGtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>An elementary quantum network of single atoms in optical cavities</title><source>Nature_系列刊</source><creator>Ritter, Stephan ; Nolleke, Christian ; Hahn, Carolin ; Reiserer, Andreas ; Neuzner, Andreas ; Uphoff, Manuel ; Mucke, Ma ; Figueroa, Eden ; Bochmann, Joerg ; Rempe, Gerhard</creator><creatorcontrib>Ritter, Stephan ; Nolleke, Christian ; Hahn, Carolin ; Reiserer, Andreas ; Neuzner, Andreas ; Uphoff, Manuel ; Mucke, Ma ; Figueroa, Eden ; Bochmann, Joerg ; Rempe, Gerhard</creatorcontrib><description>Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way--by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.</description><identifier>ISSN: 0028-0836</identifier><identifier>DOI: 10.1038/nature11023</identifier><language>eng</language><publisher>Nature Publishing Group</publisher><subject>Atoms ; Properties ; Quantum computing ; Quantum optics</subject><ispartof>Nature, 2012, Vol.484 (7393), p.195</ispartof><rights>COPYRIGHT 2012 Nature Publishing Group</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,4476,27902</link.rule.ids></links><search><creatorcontrib>Ritter, Stephan</creatorcontrib><creatorcontrib>Nolleke, Christian</creatorcontrib><creatorcontrib>Hahn, Carolin</creatorcontrib><creatorcontrib>Reiserer, Andreas</creatorcontrib><creatorcontrib>Neuzner, Andreas</creatorcontrib><creatorcontrib>Uphoff, Manuel</creatorcontrib><creatorcontrib>Mucke, Ma</creatorcontrib><creatorcontrib>Figueroa, Eden</creatorcontrib><creatorcontrib>Bochmann, Joerg</creatorcontrib><creatorcontrib>Rempe, Gerhard</creatorcontrib><title>An elementary quantum network of single atoms in optical cavities</title><title>Nature</title><description>Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way--by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.</description><subject>Atoms</subject><subject>Properties</subject><subject>Quantum computing</subject><subject>Quantum optics</subject><issn>0028-0836</issn><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2012</creationdate><recordtype>report</recordtype><sourceid/><recordid>eNqVi0sKwjAQQLNQsH5WXmAuoE7aauuyiOIB3MsQpyWaTrRJFW-vCy8gb_HgwVNqrnGpMStXQrHvWGtMs4FKENNygWW2GalxCFdEXOsiT1RVCbDjliVS94ZHTxL7FoTjy3c38DUEK41joOjbAFbA36M15MDQ00bLYaqGNbnAs58nannYn3bHRUOOz1ZqHzsyXy7cWuOFa_vtVVoWRb7dFnn29_ABFUNGtQ</recordid><startdate>20120412</startdate><enddate>20120412</enddate><creator>Ritter, Stephan</creator><creator>Nolleke, Christian</creator><creator>Hahn, Carolin</creator><creator>Reiserer, Andreas</creator><creator>Neuzner, Andreas</creator><creator>Uphoff, Manuel</creator><creator>Mucke, Ma</creator><creator>Figueroa, Eden</creator><creator>Bochmann, Joerg</creator><creator>Rempe, Gerhard</creator><general>Nature Publishing Group</general><scope/></search><sort><creationdate>20120412</creationdate><title>An elementary quantum network of single atoms in optical cavities</title><author>Ritter, Stephan ; Nolleke, Christian ; Hahn, Carolin ; Reiserer, Andreas ; Neuzner, Andreas ; Uphoff, Manuel ; Mucke, Ma ; Figueroa, Eden ; Bochmann, Joerg ; Rempe, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A2877499743</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Atoms</topic><topic>Properties</topic><topic>Quantum computing</topic><topic>Quantum optics</topic><toplevel>online_resources</toplevel><creatorcontrib>Ritter, Stephan</creatorcontrib><creatorcontrib>Nolleke, Christian</creatorcontrib><creatorcontrib>Hahn, Carolin</creatorcontrib><creatorcontrib>Reiserer, Andreas</creatorcontrib><creatorcontrib>Neuzner, Andreas</creatorcontrib><creatorcontrib>Uphoff, Manuel</creatorcontrib><creatorcontrib>Mucke, Ma</creatorcontrib><creatorcontrib>Figueroa, Eden</creatorcontrib><creatorcontrib>Bochmann, Joerg</creatorcontrib><creatorcontrib>Rempe, Gerhard</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ritter, Stephan</au><au>Nolleke, Christian</au><au>Hahn, Carolin</au><au>Reiserer, Andreas</au><au>Neuzner, Andreas</au><au>Uphoff, Manuel</au><au>Mucke, Ma</au><au>Figueroa, Eden</au><au>Bochmann, Joerg</au><au>Rempe, Gerhard</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><atitle>An elementary quantum network of single atoms in optical cavities</atitle><jtitle>Nature</jtitle><date>2012-04-12</date><risdate>2012</risdate><volume>484</volume><issue>7393</issue><spage>195</spage><pages>195-</pages><issn>0028-0836</issn><abstract>Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way--by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.</abstract><pub>Nature Publishing Group</pub><doi>10.1038/nature11023</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature, 2012, Vol.484 (7393), p.195 |
issn | 0028-0836 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A287749974 |
source | Nature_系列刊 |
subjects | Atoms Properties Quantum computing Quantum optics |
title | An elementary quantum network of single atoms in optical cavities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T03%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.atitle=An%20elementary%20quantum%20network%20of%20single%20atoms%20in%20optical%20cavities&rft.jtitle=Nature&rft.au=Ritter,%20Stephan&rft.date=2012-04-12&rft.volume=484&rft.issue=7393&rft.spage=195&rft.pages=195-&rft.issn=0028-0836&rft_id=info:doi/10.1038/nature11023&rft_dat=%3Cgale%3EA287749974%3C/gale%3E%3Cgrp_id%3Ecdi_FETCH-gale_infotracacademiconefile_A2877499743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A287749974&rfr_iscdi=true |