Loading…
Mesoscopic hydro-thermodynamics of phonons in semiconductors: heat transport in III-nitrides
It is presented a generalized hydro-thermodynamics (called mesoscopic hydro-thermodynamics MHT) of phonons in semiconductors, driven away from equilibrium by external forces, derived by the method of moments from a generalized Peierls-Boltzmann kinetic equation built in the framework of a non-equili...
Saved in:
Published in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2013-05, Vol.86 (5), Article 200 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is presented a generalized hydro-thermodynamics (called mesoscopic hydro-thermodynamics MHT) of phonons in semiconductors, driven away from equilibrium by external forces, derived by the method of moments from a generalized Peierls-Boltzmann kinetic equation built in the framework of a non-equilibrium statistical ensemble formalism. The resulting MHT involves the enormous set of coupled evolution equations for the densities of the quasi-particles (phonons) and their energy together with their fluxes of all orders. The handling of them requires the introduction of a contraction of description what defines MHT’s of different orders. We illustrate the matter analyzing heat transport by phonons in GaN within the framework of a MHT of first order to obtain a generalized Guyer-Krumhansl equation from which it is analyzed the effect of geometry on the heat transport. It is described the influence of size (from bulk to nanometric scales) on the reduction of the thermal conductivity and the improving of the figure of merit of thermoelectric devices. |
---|---|
ISSN: | 1434-6028 1434-6036 |
DOI: | 10.1140/epjb/e2013-40109-1 |