Loading…
Critical Rotational Speeds in the Gross-Pitaevskii Theory on a Disc with Dirichlet Boundary Conditions
We study the two-dimensional Gross-Pitaevskii theory of a rotating Bose gas in a disc-shaped trap with Dirichlet boundary conditions, generalizing and extending previous results that were obtained under Neumann boundary conditions. The focus is on the energy asymptotics, vorticity and qualitative pr...
Saved in:
Published in: | Journal of statistical physics 2011-04, Vol.143 (2), p.261-305 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-f11544d60bdfe87359263c3245584358e563bc2c5dbf1ffcba8e2a94710fdaec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-f11544d60bdfe87359263c3245584358e563bc2c5dbf1ffcba8e2a94710fdaec3 |
container_end_page | 305 |
container_issue | 2 |
container_start_page | 261 |
container_title | Journal of statistical physics |
container_volume | 143 |
creator | Correggi, M. Pinsker, F. Rougerie, N. Yngvason, J. |
description | We study the two-dimensional Gross-Pitaevskii theory of a rotating Bose gas in a disc-shaped trap with Dirichlet boundary conditions, generalizing and extending previous results that were obtained under Neumann boundary conditions. The focus is on the energy asymptotics, vorticity and qualitative properties of the minimizers in the parameter range |log
ε
|≪
Ω
≲
ε
−2
|log
ε
|
−1
where
Ω
is the rotational velocity and the coupling parameter is written as
ε
−2
with
ε
≪1. Three critical speeds can be identified. At
vortices start to appear and for
the vorticity is uniformly distributed over the disc. For
the centrifugal forces create a hole around the center with strongly depleted density. For
Ω
≪
ε
−2
|log
ε
|
−1
vorticity is still uniformly distributed in an annulus containing the bulk of the density, but at
there is a transition to a giant vortex state where the vorticity disappears from the bulk. The energy is then well approximated by a trial function that is an eigenfunction of angular momentum but one of our results is that the true minimizers break rotational symmetry in the whole parameter range, including the giant vortex phase. |
doi_str_mv | 10.1007/s10955-011-0182-2 |
format | article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A358427553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A358427553</galeid><sourcerecordid>A358427553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-f11544d60bdfe87359263c3245584358e563bc2c5dbf1ffcba8e2a94710fdaec3</originalsourceid><addsrcrecordid>eNp9kMtOAyEUhonRxFp9AHe8AJXLMJdlHbWamGi0rgnDQIc6hQaoxreXSV0bQjiB8_3hfABcE7wgGFc3keCGc4QJybumiJ6AGeEVRU1J2CmYYUwpKirCz8FFjFuMcVM3fAZMG2yySo7wzSeZrHe5fN9r3UdoHUyDhqvgY0SvNkn9FT-thetB-_ADvYMS3tmo4LdNQ66CVcOoE7z1B9fL3NF619spM16CMyPHqK_-zjn4eLhft4_o-WX11C6fkWK0SsgQwouiL3HXG11XjDe0ZPmp4LwuGK81L1mnqOJ9Z4gxqpO1prLJc2HTS63YHCyOuRs5amGd8SlIlVevd1Z5p43N98scVdCKc5YBcgTUNGXQRuyD3eXPC4LFZFYczYpsVkxmBc0MPTIx97qNDmLrDyGLi_9AvwpcfIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Critical Rotational Speeds in the Gross-Pitaevskii Theory on a Disc with Dirichlet Boundary Conditions</title><source>Springer Nature</source><creator>Correggi, M. ; Pinsker, F. ; Rougerie, N. ; Yngvason, J.</creator><creatorcontrib>Correggi, M. ; Pinsker, F. ; Rougerie, N. ; Yngvason, J.</creatorcontrib><description>We study the two-dimensional Gross-Pitaevskii theory of a rotating Bose gas in a disc-shaped trap with Dirichlet boundary conditions, generalizing and extending previous results that were obtained under Neumann boundary conditions. The focus is on the energy asymptotics, vorticity and qualitative properties of the minimizers in the parameter range |log
ε
|≪
Ω
≲
ε
−2
|log
ε
|
−1
where
Ω
is the rotational velocity and the coupling parameter is written as
ε
−2
with
ε
≪1. Three critical speeds can be identified. At
vortices start to appear and for
the vorticity is uniformly distributed over the disc. For
the centrifugal forces create a hole around the center with strongly depleted density. For
Ω
≪
ε
−2
|log
ε
|
−1
vorticity is still uniformly distributed in an annulus containing the bulk of the density, but at
there is a transition to a giant vortex state where the vorticity disappears from the bulk. The energy is then well approximated by a trial function that is an eigenfunction of angular momentum but one of our results is that the true minimizers break rotational symmetry in the whole parameter range, including the giant vortex phase.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-011-0182-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical ; Toy industry</subject><ispartof>Journal of statistical physics, 2011-04, Vol.143 (2), p.261-305</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-f11544d60bdfe87359263c3245584358e563bc2c5dbf1ffcba8e2a94710fdaec3</citedby><cites>FETCH-LOGICAL-c327t-f11544d60bdfe87359263c3245584358e563bc2c5dbf1ffcba8e2a94710fdaec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Correggi, M.</creatorcontrib><creatorcontrib>Pinsker, F.</creatorcontrib><creatorcontrib>Rougerie, N.</creatorcontrib><creatorcontrib>Yngvason, J.</creatorcontrib><title>Critical Rotational Speeds in the Gross-Pitaevskii Theory on a Disc with Dirichlet Boundary Conditions</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We study the two-dimensional Gross-Pitaevskii theory of a rotating Bose gas in a disc-shaped trap with Dirichlet boundary conditions, generalizing and extending previous results that were obtained under Neumann boundary conditions. The focus is on the energy asymptotics, vorticity and qualitative properties of the minimizers in the parameter range |log
ε
|≪
Ω
≲
ε
−2
|log
ε
|
−1
where
Ω
is the rotational velocity and the coupling parameter is written as
ε
−2
with
ε
≪1. Three critical speeds can be identified. At
vortices start to appear and for
the vorticity is uniformly distributed over the disc. For
the centrifugal forces create a hole around the center with strongly depleted density. For
Ω
≪
ε
−2
|log
ε
|
−1
vorticity is still uniformly distributed in an annulus containing the bulk of the density, but at
there is a transition to a giant vortex state where the vorticity disappears from the bulk. The energy is then well approximated by a trial function that is an eigenfunction of angular momentum but one of our results is that the true minimizers break rotational symmetry in the whole parameter range, including the giant vortex phase.</description><subject>Analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><subject>Toy industry</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAyEUhonRxFp9AHe8AJXLMJdlHbWamGi0rgnDQIc6hQaoxreXSV0bQjiB8_3hfABcE7wgGFc3keCGc4QJybumiJ6AGeEVRU1J2CmYYUwpKirCz8FFjFuMcVM3fAZMG2yySo7wzSeZrHe5fN9r3UdoHUyDhqvgY0SvNkn9FT-thetB-_ADvYMS3tmo4LdNQ66CVcOoE7z1B9fL3NF619spM16CMyPHqK_-zjn4eLhft4_o-WX11C6fkWK0SsgQwouiL3HXG11XjDe0ZPmp4LwuGK81L1mnqOJ9Z4gxqpO1prLJc2HTS63YHCyOuRs5amGd8SlIlVevd1Z5p43N98scVdCKc5YBcgTUNGXQRuyD3eXPC4LFZFYczYpsVkxmBc0MPTIx97qNDmLrDyGLi_9AvwpcfIE</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Correggi, M.</creator><creator>Pinsker, F.</creator><creator>Rougerie, N.</creator><creator>Yngvason, J.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110401</creationdate><title>Critical Rotational Speeds in the Gross-Pitaevskii Theory on a Disc with Dirichlet Boundary Conditions</title><author>Correggi, M. ; Pinsker, F. ; Rougerie, N. ; Yngvason, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-f11544d60bdfe87359263c3245584358e563bc2c5dbf1ffcba8e2a94710fdaec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><topic>Toy industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Correggi, M.</creatorcontrib><creatorcontrib>Pinsker, F.</creatorcontrib><creatorcontrib>Rougerie, N.</creatorcontrib><creatorcontrib>Yngvason, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Correggi, M.</au><au>Pinsker, F.</au><au>Rougerie, N.</au><au>Yngvason, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical Rotational Speeds in the Gross-Pitaevskii Theory on a Disc with Dirichlet Boundary Conditions</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>143</volume><issue>2</issue><spage>261</spage><epage>305</epage><pages>261-305</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We study the two-dimensional Gross-Pitaevskii theory of a rotating Bose gas in a disc-shaped trap with Dirichlet boundary conditions, generalizing and extending previous results that were obtained under Neumann boundary conditions. The focus is on the energy asymptotics, vorticity and qualitative properties of the minimizers in the parameter range |log
ε
|≪
Ω
≲
ε
−2
|log
ε
|
−1
where
Ω
is the rotational velocity and the coupling parameter is written as
ε
−2
with
ε
≪1. Three critical speeds can be identified. At
vortices start to appear and for
the vorticity is uniformly distributed over the disc. For
the centrifugal forces create a hole around the center with strongly depleted density. For
Ω
≪
ε
−2
|log
ε
|
−1
vorticity is still uniformly distributed in an annulus containing the bulk of the density, but at
there is a transition to a giant vortex state where the vorticity disappears from the bulk. The energy is then well approximated by a trial function that is an eigenfunction of angular momentum but one of our results is that the true minimizers break rotational symmetry in the whole parameter range, including the giant vortex phase.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10955-011-0182-2</doi><tpages>45</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2011-04, Vol.143 (2), p.261-305 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A358427553 |
source | Springer Nature |
subjects | Analysis Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Theoretical Toy industry |
title | Critical Rotational Speeds in the Gross-Pitaevskii Theory on a Disc with Dirichlet Boundary Conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20Rotational%20Speeds%20in%20the%20Gross-Pitaevskii%20Theory%20on%20a%20Disc%20with%20Dirichlet%20Boundary%20Conditions&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Correggi,%20M.&rft.date=2011-04-01&rft.volume=143&rft.issue=2&rft.spage=261&rft.epage=305&rft.pages=261-305&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-011-0182-2&rft_dat=%3Cgale_cross%3EA358427553%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-f11544d60bdfe87359263c3245584358e563bc2c5dbf1ffcba8e2a94710fdaec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A358427553&rfr_iscdi=true |