Loading…

Critical Rotational Speeds in the Gross-Pitaevskii Theory on a Disc with Dirichlet Boundary Conditions

We study the two-dimensional Gross-Pitaevskii theory of a rotating Bose gas in a disc-shaped trap with Dirichlet boundary conditions, generalizing and extending previous results that were obtained under Neumann boundary conditions. The focus is on the energy asymptotics, vorticity and qualitative pr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical physics 2011-04, Vol.143 (2), p.261-305
Main Authors: Correggi, M., Pinsker, F., Rougerie, N., Yngvason, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-f11544d60bdfe87359263c3245584358e563bc2c5dbf1ffcba8e2a94710fdaec3
cites cdi_FETCH-LOGICAL-c327t-f11544d60bdfe87359263c3245584358e563bc2c5dbf1ffcba8e2a94710fdaec3
container_end_page 305
container_issue 2
container_start_page 261
container_title Journal of statistical physics
container_volume 143
creator Correggi, M.
Pinsker, F.
Rougerie, N.
Yngvason, J.
description We study the two-dimensional Gross-Pitaevskii theory of a rotating Bose gas in a disc-shaped trap with Dirichlet boundary conditions, generalizing and extending previous results that were obtained under Neumann boundary conditions. The focus is on the energy asymptotics, vorticity and qualitative properties of the minimizers in the parameter range |log  ε |≪ Ω ≲ ε −2 |log  ε | −1 where Ω is the rotational velocity and the coupling parameter is written as ε −2 with ε ≪1. Three critical speeds can be identified. At vortices start to appear and for the vorticity is uniformly distributed over the disc. For the centrifugal forces create a hole around the center with strongly depleted density. For Ω ≪ ε −2 |log  ε | −1 vorticity is still uniformly distributed in an annulus containing the bulk of the density, but at there is a transition to a giant vortex state where the vorticity disappears from the bulk. The energy is then well approximated by a trial function that is an eigenfunction of angular momentum but one of our results is that the true minimizers break rotational symmetry in the whole parameter range, including the giant vortex phase.
doi_str_mv 10.1007/s10955-011-0182-2
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A358427553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A358427553</galeid><sourcerecordid>A358427553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-f11544d60bdfe87359263c3245584358e563bc2c5dbf1ffcba8e2a94710fdaec3</originalsourceid><addsrcrecordid>eNp9kMtOAyEUhonRxFp9AHe8AJXLMJdlHbWamGi0rgnDQIc6hQaoxreXSV0bQjiB8_3hfABcE7wgGFc3keCGc4QJybumiJ6AGeEVRU1J2CmYYUwpKirCz8FFjFuMcVM3fAZMG2yySo7wzSeZrHe5fN9r3UdoHUyDhqvgY0SvNkn9FT-thetB-_ADvYMS3tmo4LdNQ66CVcOoE7z1B9fL3NF619spM16CMyPHqK_-zjn4eLhft4_o-WX11C6fkWK0SsgQwouiL3HXG11XjDe0ZPmp4LwuGK81L1mnqOJ9Z4gxqpO1prLJc2HTS63YHCyOuRs5amGd8SlIlVevd1Z5p43N98scVdCKc5YBcgTUNGXQRuyD3eXPC4LFZFYczYpsVkxmBc0MPTIx97qNDmLrDyGLi_9AvwpcfIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Critical Rotational Speeds in the Gross-Pitaevskii Theory on a Disc with Dirichlet Boundary Conditions</title><source>Springer Nature</source><creator>Correggi, M. ; Pinsker, F. ; Rougerie, N. ; Yngvason, J.</creator><creatorcontrib>Correggi, M. ; Pinsker, F. ; Rougerie, N. ; Yngvason, J.</creatorcontrib><description>We study the two-dimensional Gross-Pitaevskii theory of a rotating Bose gas in a disc-shaped trap with Dirichlet boundary conditions, generalizing and extending previous results that were obtained under Neumann boundary conditions. The focus is on the energy asymptotics, vorticity and qualitative properties of the minimizers in the parameter range |log  ε |≪ Ω ≲ ε −2 |log  ε | −1 where Ω is the rotational velocity and the coupling parameter is written as ε −2 with ε ≪1. Three critical speeds can be identified. At vortices start to appear and for the vorticity is uniformly distributed over the disc. For the centrifugal forces create a hole around the center with strongly depleted density. For Ω ≪ ε −2 |log  ε | −1 vorticity is still uniformly distributed in an annulus containing the bulk of the density, but at there is a transition to a giant vortex state where the vorticity disappears from the bulk. The energy is then well approximated by a trial function that is an eigenfunction of angular momentum but one of our results is that the true minimizers break rotational symmetry in the whole parameter range, including the giant vortex phase.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-011-0182-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical ; Toy industry</subject><ispartof>Journal of statistical physics, 2011-04, Vol.143 (2), p.261-305</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-f11544d60bdfe87359263c3245584358e563bc2c5dbf1ffcba8e2a94710fdaec3</citedby><cites>FETCH-LOGICAL-c327t-f11544d60bdfe87359263c3245584358e563bc2c5dbf1ffcba8e2a94710fdaec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Correggi, M.</creatorcontrib><creatorcontrib>Pinsker, F.</creatorcontrib><creatorcontrib>Rougerie, N.</creatorcontrib><creatorcontrib>Yngvason, J.</creatorcontrib><title>Critical Rotational Speeds in the Gross-Pitaevskii Theory on a Disc with Dirichlet Boundary Conditions</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We study the two-dimensional Gross-Pitaevskii theory of a rotating Bose gas in a disc-shaped trap with Dirichlet boundary conditions, generalizing and extending previous results that were obtained under Neumann boundary conditions. The focus is on the energy asymptotics, vorticity and qualitative properties of the minimizers in the parameter range |log  ε |≪ Ω ≲ ε −2 |log  ε | −1 where Ω is the rotational velocity and the coupling parameter is written as ε −2 with ε ≪1. Three critical speeds can be identified. At vortices start to appear and for the vorticity is uniformly distributed over the disc. For the centrifugal forces create a hole around the center with strongly depleted density. For Ω ≪ ε −2 |log  ε | −1 vorticity is still uniformly distributed in an annulus containing the bulk of the density, but at there is a transition to a giant vortex state where the vorticity disappears from the bulk. The energy is then well approximated by a trial function that is an eigenfunction of angular momentum but one of our results is that the true minimizers break rotational symmetry in the whole parameter range, including the giant vortex phase.</description><subject>Analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><subject>Toy industry</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAyEUhonRxFp9AHe8AJXLMJdlHbWamGi0rgnDQIc6hQaoxreXSV0bQjiB8_3hfABcE7wgGFc3keCGc4QJybumiJ6AGeEVRU1J2CmYYUwpKirCz8FFjFuMcVM3fAZMG2yySo7wzSeZrHe5fN9r3UdoHUyDhqvgY0SvNkn9FT-thetB-_ADvYMS3tmo4LdNQ66CVcOoE7z1B9fL3NF619spM16CMyPHqK_-zjn4eLhft4_o-WX11C6fkWK0SsgQwouiL3HXG11XjDe0ZPmp4LwuGK81L1mnqOJ9Z4gxqpO1prLJc2HTS63YHCyOuRs5amGd8SlIlVevd1Z5p43N98scVdCKc5YBcgTUNGXQRuyD3eXPC4LFZFYczYpsVkxmBc0MPTIx97qNDmLrDyGLi_9AvwpcfIE</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Correggi, M.</creator><creator>Pinsker, F.</creator><creator>Rougerie, N.</creator><creator>Yngvason, J.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110401</creationdate><title>Critical Rotational Speeds in the Gross-Pitaevskii Theory on a Disc with Dirichlet Boundary Conditions</title><author>Correggi, M. ; Pinsker, F. ; Rougerie, N. ; Yngvason, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-f11544d60bdfe87359263c3245584358e563bc2c5dbf1ffcba8e2a94710fdaec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><topic>Toy industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Correggi, M.</creatorcontrib><creatorcontrib>Pinsker, F.</creatorcontrib><creatorcontrib>Rougerie, N.</creatorcontrib><creatorcontrib>Yngvason, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Correggi, M.</au><au>Pinsker, F.</au><au>Rougerie, N.</au><au>Yngvason, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical Rotational Speeds in the Gross-Pitaevskii Theory on a Disc with Dirichlet Boundary Conditions</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>143</volume><issue>2</issue><spage>261</spage><epage>305</epage><pages>261-305</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We study the two-dimensional Gross-Pitaevskii theory of a rotating Bose gas in a disc-shaped trap with Dirichlet boundary conditions, generalizing and extending previous results that were obtained under Neumann boundary conditions. The focus is on the energy asymptotics, vorticity and qualitative properties of the minimizers in the parameter range |log  ε |≪ Ω ≲ ε −2 |log  ε | −1 where Ω is the rotational velocity and the coupling parameter is written as ε −2 with ε ≪1. Three critical speeds can be identified. At vortices start to appear and for the vorticity is uniformly distributed over the disc. For the centrifugal forces create a hole around the center with strongly depleted density. For Ω ≪ ε −2 |log  ε | −1 vorticity is still uniformly distributed in an annulus containing the bulk of the density, but at there is a transition to a giant vortex state where the vorticity disappears from the bulk. The energy is then well approximated by a trial function that is an eigenfunction of angular momentum but one of our results is that the true minimizers break rotational symmetry in the whole parameter range, including the giant vortex phase.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10955-011-0182-2</doi><tpages>45</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2011-04, Vol.143 (2), p.261-305
issn 0022-4715
1572-9613
language eng
recordid cdi_gale_infotracacademiconefile_A358427553
source Springer Nature
subjects Analysis
Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
Toy industry
title Critical Rotational Speeds in the Gross-Pitaevskii Theory on a Disc with Dirichlet Boundary Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20Rotational%20Speeds%20in%20the%20Gross-Pitaevskii%20Theory%20on%20a%20Disc%20with%20Dirichlet%20Boundary%20Conditions&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Correggi,%20M.&rft.date=2011-04-01&rft.volume=143&rft.issue=2&rft.spage=261&rft.epage=305&rft.pages=261-305&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-011-0182-2&rft_dat=%3Cgale_cross%3EA358427553%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-f11544d60bdfe87359263c3245584358e563bc2c5dbf1ffcba8e2a94710fdaec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A358427553&rfr_iscdi=true