Loading…

The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites

Phase change materials (PCM) have been extensively scrutinized for their widely application in thermal energy storage (TES). Paraffin was considered to be one of the most prospective PCMs with perfect properties. However, lower thermal conductivity hinders the further application. In this letter, we...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2012-03, Vol.107 (3), p.949-954
Main Authors: Wang, N., Zhang, X. R., Zhu, D. S., Gao, J. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phase change materials (PCM) have been extensively scrutinized for their widely application in thermal energy storage (TES). Paraffin was considered to be one of the most prospective PCMs with perfect properties. However, lower thermal conductivity hinders the further application. In this letter, we experimentally investigate the thermal conductivity and energy storage of composites consisting of paraffin and micron-size graphite flakes (MSGFs). The results strongly suggested that the thermal conductivity enhances enormously with increasing the mass fraction of the MSGFs. The formation of heat flow network is the key factor for high thermal conductivity in this case. Meanwhile, compared to that of the thermal conductivity, the latent heat capacity, the melting temperature, and the freezing temperature of the composites present negligible change with increasing the concentration of the MSGFs. The paraffin-based composites have great potential for energy storage application with optimal fraction of the MSGFs.
ISSN:1388-6150
1588-2926
1572-8943
DOI:10.1007/s10973-011-1467-z