Loading…

Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes up to 1273 K in ambient

Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes (CNTs) have been studied using thermogravimetry up to 1273 K in ambient using multiple heating rates. One single heating rate based model-fitting technique and four multiple heating rates based model-free isoconversional...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2012-03, Vol.107 (3), p.1093-1103
Main Authors: Sarkar, Soumya, Das, Probal Kr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-aea4d7d765fa162fb55bc0fb6e449fa78418ae97685c3c3f92adeb99f9a0f30a3
cites cdi_FETCH-LOGICAL-c391t-aea4d7d765fa162fb55bc0fb6e449fa78418ae97685c3c3f92adeb99f9a0f30a3
container_end_page 1103
container_issue 3
container_start_page 1093
container_title Journal of thermal analysis and calorimetry
container_volume 107
creator Sarkar, Soumya
Das, Probal Kr
description Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes (CNTs) have been studied using thermogravimetry up to 1273 K in ambient using multiple heating rates. One single heating rate based model-fitting technique and four multiple heating rates based model-free isoconversional methods were used for this purpose. Depending on nanotube structure and impurity content, average activation energy ( E a ), pre-exponential factor ( A ), reaction order ( n ), and degradation mechanism changed considerably. For multi-walled CNTs, E a and A evaluated using model-fitting technique were ranged from 142.31 to 178.19 kJ mol −1 , respectively, and from 1.71 × 10 5 to 5.81 × 10 7  s −1 , respectively, whereas, E a for single-walled CNTs ranged from 83.84 to 148.68 kJ mol −1 and A from 2.55 × 10 2 to 1.18 × 10 7  s −1 . Although, irrespective of CNT type, the model-fitting method resulted in a single kinetic triplet i.e., E a , A , and reaction mechanism, model-free isoconversional methods suggested that thermal oxidation of these nanotubes could be either a simple single-step mechanism with almost constant activation energy throughout the reaction span or a complex process involving multiple mechanisms that offered varying E a with extent of conversion. Criado method was employed to predict degradation mechanism(s) of these CNTs.
doi_str_mv 10.1007/s10973-011-1797-x
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A359171803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A359171803</galeid><sourcerecordid>A359171803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-aea4d7d765fa162fb55bc0fb6e449fa78418ae97685c3c3f92adeb99f9a0f30a3</originalsourceid><addsrcrecordid>eNp9kbtuFTEQhlcoSEQhD0DnhiKFgy_H9rqMInIRRyBxqa1Zr70Ydu0j26sc3oZn4clwtBFSGuTCo5nvm2L-rntDySUlRL0rlGjFMaEUU6UVPr7oTqnoe8w0kyet5q2WVJBX3XkpYSCMEqlFr0-76WOKOJRUv7u8wIzSMYxQQ4roZ4iuBltQ8qiEOM0OI4gjWta5BvwA8-xGZCEPjY0QU10HV9B6QDUhyhT_8_sDChHBMgQX6-vupYe5uPOn_6z7dvP-6_Ud3n-6vb--2mPLNa0YHOxGNSopPFDJ_CDEYIkfpNvttAfV72gPTivZC8st95rB6AatvQbiOQF-1l1ueyeYnQnRp5rBtje6JdgUnQ-tf8WFpor2hDfh4pnQmOqOdYK1FHP_5fNzlm6szamU7Lw55LBA_mUoMY9JmC0J05Iwj0mYY3Pebs4BioXZZ4g2lH8iE0JJyXTj2MaVNoqTy-ZHWnNst_rP8r8CIJnn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes up to 1273 K in ambient</title><source>Springer Link</source><creator>Sarkar, Soumya ; Das, Probal Kr</creator><creatorcontrib>Sarkar, Soumya ; Das, Probal Kr</creatorcontrib><description>Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes (CNTs) have been studied using thermogravimetry up to 1273 K in ambient using multiple heating rates. One single heating rate based model-fitting technique and four multiple heating rates based model-free isoconversional methods were used for this purpose. Depending on nanotube structure and impurity content, average activation energy ( E a ), pre-exponential factor ( A ), reaction order ( n ), and degradation mechanism changed considerably. For multi-walled CNTs, E a and A evaluated using model-fitting technique were ranged from 142.31 to 178.19 kJ mol −1 , respectively, and from 1.71 × 10 5 to 5.81 × 10 7  s −1 , respectively, whereas, E a for single-walled CNTs ranged from 83.84 to 148.68 kJ mol −1 and A from 2.55 × 10 2 to 1.18 × 10 7  s −1 . Although, irrespective of CNT type, the model-fitting method resulted in a single kinetic triplet i.e., E a , A , and reaction mechanism, model-free isoconversional methods suggested that thermal oxidation of these nanotubes could be either a simple single-step mechanism with almost constant activation energy throughout the reaction span or a complex process involving multiple mechanisms that offered varying E a with extent of conversion. Criado method was employed to predict degradation mechanism(s) of these CNTs.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>EISSN: 1572-8943</identifier><identifier>DOI: 10.1007/s10973-011-1797-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Inorganic Chemistry ; Materials science ; Measurement Science and Instrumentation ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Oxidation-reduction reaction ; Physical Chemistry ; Physics ; Polymer Sciences</subject><ispartof>Journal of thermal analysis and calorimetry, 2012-03, Vol.107 (3), p.1093-1103</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2012 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-aea4d7d765fa162fb55bc0fb6e449fa78418ae97685c3c3f92adeb99f9a0f30a3</citedby><cites>FETCH-LOGICAL-c391t-aea4d7d765fa162fb55bc0fb6e449fa78418ae97685c3c3f92adeb99f9a0f30a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25576629$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarkar, Soumya</creatorcontrib><creatorcontrib>Das, Probal Kr</creatorcontrib><title>Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes up to 1273 K in ambient</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes (CNTs) have been studied using thermogravimetry up to 1273 K in ambient using multiple heating rates. One single heating rate based model-fitting technique and four multiple heating rates based model-free isoconversional methods were used for this purpose. Depending on nanotube structure and impurity content, average activation energy ( E a ), pre-exponential factor ( A ), reaction order ( n ), and degradation mechanism changed considerably. For multi-walled CNTs, E a and A evaluated using model-fitting technique were ranged from 142.31 to 178.19 kJ mol −1 , respectively, and from 1.71 × 10 5 to 5.81 × 10 7  s −1 , respectively, whereas, E a for single-walled CNTs ranged from 83.84 to 148.68 kJ mol −1 and A from 2.55 × 10 2 to 1.18 × 10 7  s −1 . Although, irrespective of CNT type, the model-fitting method resulted in a single kinetic triplet i.e., E a , A , and reaction mechanism, model-free isoconversional methods suggested that thermal oxidation of these nanotubes could be either a simple single-step mechanism with almost constant activation energy throughout the reaction span or a complex process involving multiple mechanisms that offered varying E a with extent of conversion. Criado method was employed to predict degradation mechanism(s) of these CNTs.</description><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Inorganic Chemistry</subject><subject>Materials science</subject><subject>Measurement Science and Instrumentation</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Oxidation-reduction reaction</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Polymer Sciences</subject><issn>1388-6150</issn><issn>1588-2926</issn><issn>1572-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kbtuFTEQhlcoSEQhD0DnhiKFgy_H9rqMInIRRyBxqa1Zr70Ydu0j26sc3oZn4clwtBFSGuTCo5nvm2L-rntDySUlRL0rlGjFMaEUU6UVPr7oTqnoe8w0kyet5q2WVJBX3XkpYSCMEqlFr0-76WOKOJRUv7u8wIzSMYxQQ4roZ4iuBltQ8qiEOM0OI4gjWta5BvwA8-xGZCEPjY0QU10HV9B6QDUhyhT_8_sDChHBMgQX6-vupYe5uPOn_6z7dvP-6_Ud3n-6vb--2mPLNa0YHOxGNSopPFDJ_CDEYIkfpNvttAfV72gPTivZC8st95rB6AatvQbiOQF-1l1ueyeYnQnRp5rBtje6JdgUnQ-tf8WFpor2hDfh4pnQmOqOdYK1FHP_5fNzlm6szamU7Lw55LBA_mUoMY9JmC0J05Iwj0mYY3Pebs4BioXZZ4g2lH8iE0JJyXTj2MaVNoqTy-ZHWnNst_rP8r8CIJnn</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Sarkar, Soumya</creator><creator>Das, Probal Kr</creator><general>Springer Netherlands</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20120301</creationdate><title>Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes up to 1273 K in ambient</title><author>Sarkar, Soumya ; Das, Probal Kr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-aea4d7d765fa162fb55bc0fb6e449fa78418ae97685c3c3f92adeb99f9a0f30a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Inorganic Chemistry</topic><topic>Materials science</topic><topic>Measurement Science and Instrumentation</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Oxidation-reduction reaction</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Polymer Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Soumya</creatorcontrib><creatorcontrib>Das, Probal Kr</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale in Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Soumya</au><au>Das, Probal Kr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes up to 1273 K in ambient</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>107</volume><issue>3</issue><spage>1093</spage><epage>1103</epage><pages>1093-1103</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><eissn>1572-8943</eissn><abstract>Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes (CNTs) have been studied using thermogravimetry up to 1273 K in ambient using multiple heating rates. One single heating rate based model-fitting technique and four multiple heating rates based model-free isoconversional methods were used for this purpose. Depending on nanotube structure and impurity content, average activation energy ( E a ), pre-exponential factor ( A ), reaction order ( n ), and degradation mechanism changed considerably. For multi-walled CNTs, E a and A evaluated using model-fitting technique were ranged from 142.31 to 178.19 kJ mol −1 , respectively, and from 1.71 × 10 5 to 5.81 × 10 7  s −1 , respectively, whereas, E a for single-walled CNTs ranged from 83.84 to 148.68 kJ mol −1 and A from 2.55 × 10 2 to 1.18 × 10 7  s −1 . Although, irrespective of CNT type, the model-fitting method resulted in a single kinetic triplet i.e., E a , A , and reaction mechanism, model-free isoconversional methods suggested that thermal oxidation of these nanotubes could be either a simple single-step mechanism with almost constant activation energy throughout the reaction span or a complex process involving multiple mechanisms that offered varying E a with extent of conversion. Criado method was employed to predict degradation mechanism(s) of these CNTs.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10973-011-1797-x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2012-03, Vol.107 (3), p.1093-1103
issn 1388-6150
1588-2926
1572-8943
language eng
recordid cdi_gale_infotracacademiconefile_A359171803
source Springer Link
subjects Analytical Chemistry
Chemistry
Chemistry and Materials Science
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Inorganic Chemistry
Materials science
Measurement Science and Instrumentation
Nanoscale materials and structures: fabrication and characterization
Nanotubes
Oxidation-reduction reaction
Physical Chemistry
Physics
Polymer Sciences
title Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes up to 1273 K in ambient
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-isothermal%20oxidation%20kinetics%20of%20single-%20and%20multi-walled%20carbon%20nanotubes%20up%20to%201273%C2%A0K%20in%20ambient&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Sarkar,%20Soumya&rft.date=2012-03-01&rft.volume=107&rft.issue=3&rft.spage=1093&rft.epage=1103&rft.pages=1093-1103&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-011-1797-x&rft_dat=%3Cgale_cross%3EA359171803%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-aea4d7d765fa162fb55bc0fb6e449fa78418ae97685c3c3f92adeb99f9a0f30a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A359171803&rfr_iscdi=true