Loading…
Effect of deposition parameters on the superhardness and stoichiometry of nanostructured Ti–Hf–Si–N films
Superhard nanostructured Ti–Hf–Si–N coatings (films) possessing high physical and mechanical properties have been produced. Nuclear and atomic physical analyses, such as RBS, SIMS, GDMS, SEM-EDXS, XRD, and nanoindentation were used to investigate the elemental and phase composition and the morpholog...
Saved in:
Published in: | Russian physics journal 2012-04, Vol.54 (11), p.1218-1225 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-bb3f6854894ab264c1801ad1be856d4547fe1def3b04adb6e91c2d5b7f3184743 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-bb3f6854894ab264c1801ad1be856d4547fe1def3b04adb6e91c2d5b7f3184743 |
container_end_page | 1225 |
container_issue | 11 |
container_start_page | 1218 |
container_title | Russian physics journal |
container_volume | 54 |
creator | Pogrebnyak, A. D. Beresnev, V. M. Shpak, A. P. Konarskii, P. Komarov, F. F. Kirik, G. V. Makhmudov, N. A. Kolesnikov, D. A. Uglov, V. V. Sobol, O. V. Kaverin, M. V. Grudnitskii, V. V. |
description | Superhard nanostructured Ti–Hf–Si–N coatings (films) possessing high physical and mechanical properties have been produced. Nuclear and atomic physical analyses, such as RBS, SIMS, GDMS, SEM-EDXS, XRD, and nanoindentation were used to investigate the elemental and phase composition and the morphology of the films as functions of the pressure in the chamber and of the bias voltage applied to the substrate. It was observed that as the grain size in nc-(Ti, Hf)N coatings was decreased from 6.7 to 5 nm and α-Si
3
N
4
(amorphous or quasi-amorphous phase interlayer between nanograins) formed, the coating nanohardness increased from 42.7 to 48.4 ± 1.6 GPa. However, the further decrease of the (Ti, Hf)N grain size to 4.0 nm resulted in a slight decrease in nanohardness. The stoichiometry of the films changes from (Ti
40
–Hf
9
–Si
7.5
)N
46
to (Ti
28
–Hf
18
–Si
9
)N
45
, and also changed the lattice parameter of the (Ti, Hf)N solid solution. It should be noted that the high-hardness coatings showed the least friction coefficient (0.2), and its value remained unchanged until the coating worn out. |
doi_str_mv | 10.1007/s11182-012-9734-4 |
format | article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A359334897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A359334897</galeid><sourcerecordid>A359334897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-bb3f6854894ab264c1801ad1be856d4547fe1def3b04adb6e91c2d5b7f3184743</originalsourceid><addsrcrecordid>eNp9kM1OAyEQxzdGE2v1AbzxAlthYRf2aEy1Jo0erGfCwtDStNAAPfTmO_iGPols6tlMMh_J_ObjX1X3BM8IxvwhEUJEU2PS1D2nrGYX1YS0nNZ904jLkuOO1UIIfl3dpLTFuFAdn1Rhbi3ojIJFBg4hueyCRwcV1R4yxIRKlTeA0vEAcaOi8ZASUt6glIPTGxdKXzyNvFc-pByPOh8jGLRyP1_fC1vcx5i9Iet2-3RbXVm1S3D3F6fV5_N89bSol-8vr0-Py1rThud6GKjtRMtEz9TQdEwTgYkyZADRdoa1jFsgBiwdMFNm6KAnujHtwC0lgnFGp9XsPHetdiCdtyFHpYsZ2DsdPJRrQD7Stqe0bOEFIGdAx5BSBCsP0e1VPEmC5SixPEssi8RylFiOS5ozk0qvX0OU23CMvvz1D_QLoqGDnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of deposition parameters on the superhardness and stoichiometry of nanostructured Ti–Hf–Si–N films</title><source>Springer Nature</source><creator>Pogrebnyak, A. D. ; Beresnev, V. M. ; Shpak, A. P. ; Konarskii, P. ; Komarov, F. F. ; Kirik, G. V. ; Makhmudov, N. A. ; Kolesnikov, D. A. ; Uglov, V. V. ; Sobol, O. V. ; Kaverin, M. V. ; Grudnitskii, V. V.</creator><creatorcontrib>Pogrebnyak, A. D. ; Beresnev, V. M. ; Shpak, A. P. ; Konarskii, P. ; Komarov, F. F. ; Kirik, G. V. ; Makhmudov, N. A. ; Kolesnikov, D. A. ; Uglov, V. V. ; Sobol, O. V. ; Kaverin, M. V. ; Grudnitskii, V. V.</creatorcontrib><description>Superhard nanostructured Ti–Hf–Si–N coatings (films) possessing high physical and mechanical properties have been produced. Nuclear and atomic physical analyses, such as RBS, SIMS, GDMS, SEM-EDXS, XRD, and nanoindentation were used to investigate the elemental and phase composition and the morphology of the films as functions of the pressure in the chamber and of the bias voltage applied to the substrate. It was observed that as the grain size in nc-(Ti, Hf)N coatings was decreased from 6.7 to 5 nm and α-Si
3
N
4
(amorphous or quasi-amorphous phase interlayer between nanograins) formed, the coating nanohardness increased from 42.7 to 48.4 ± 1.6 GPa. However, the further decrease of the (Ti, Hf)N grain size to 4.0 nm resulted in a slight decrease in nanohardness. The stoichiometry of the films changes from (Ti
40
–Hf
9
–Si
7.5
)N
46
to (Ti
28
–Hf
18
–Si
9
)N
45
, and also changed the lattice parameter of the (Ti, Hf)N solid solution. It should be noted that the high-hardness coatings showed the least friction coefficient (0.2), and its value remained unchanged until the coating worn out.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-012-9734-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Coatings ; Coatings industry ; Condensed Matter Physics ; Hadrons ; Hardness ; Heavy Ions ; Lasers ; Mathematical and Computational Physics ; Mechanical properties ; Nuclear Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Russian physics journal, 2012-04, Vol.54 (11), p.1218-1225</ispartof><rights>Springer Science+Business Media, Inc. 2012</rights><rights>COPYRIGHT 2012 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-bb3f6854894ab264c1801ad1be856d4547fe1def3b04adb6e91c2d5b7f3184743</citedby><cites>FETCH-LOGICAL-c327t-bb3f6854894ab264c1801ad1be856d4547fe1def3b04adb6e91c2d5b7f3184743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pogrebnyak, A. D.</creatorcontrib><creatorcontrib>Beresnev, V. M.</creatorcontrib><creatorcontrib>Shpak, A. P.</creatorcontrib><creatorcontrib>Konarskii, P.</creatorcontrib><creatorcontrib>Komarov, F. F.</creatorcontrib><creatorcontrib>Kirik, G. V.</creatorcontrib><creatorcontrib>Makhmudov, N. A.</creatorcontrib><creatorcontrib>Kolesnikov, D. A.</creatorcontrib><creatorcontrib>Uglov, V. V.</creatorcontrib><creatorcontrib>Sobol, O. V.</creatorcontrib><creatorcontrib>Kaverin, M. V.</creatorcontrib><creatorcontrib>Grudnitskii, V. V.</creatorcontrib><title>Effect of deposition parameters on the superhardness and stoichiometry of nanostructured Ti–Hf–Si–N films</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>Superhard nanostructured Ti–Hf–Si–N coatings (films) possessing high physical and mechanical properties have been produced. Nuclear and atomic physical analyses, such as RBS, SIMS, GDMS, SEM-EDXS, XRD, and nanoindentation were used to investigate the elemental and phase composition and the morphology of the films as functions of the pressure in the chamber and of the bias voltage applied to the substrate. It was observed that as the grain size in nc-(Ti, Hf)N coatings was decreased from 6.7 to 5 nm and α-Si
3
N
4
(amorphous or quasi-amorphous phase interlayer between nanograins) formed, the coating nanohardness increased from 42.7 to 48.4 ± 1.6 GPa. However, the further decrease of the (Ti, Hf)N grain size to 4.0 nm resulted in a slight decrease in nanohardness. The stoichiometry of the films changes from (Ti
40
–Hf
9
–Si
7.5
)N
46
to (Ti
28
–Hf
18
–Si
9
)N
45
, and also changed the lattice parameter of the (Ti, Hf)N solid solution. It should be noted that the high-hardness coatings showed the least friction coefficient (0.2), and its value remained unchanged until the coating worn out.</description><subject>Analysis</subject><subject>Coatings</subject><subject>Coatings industry</subject><subject>Condensed Matter Physics</subject><subject>Hadrons</subject><subject>Hardness</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical properties</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEQxzdGE2v1AbzxAlthYRf2aEy1Jo0erGfCwtDStNAAPfTmO_iGPols6tlMMh_J_ObjX1X3BM8IxvwhEUJEU2PS1D2nrGYX1YS0nNZ904jLkuOO1UIIfl3dpLTFuFAdn1Rhbi3ojIJFBg4hueyCRwcV1R4yxIRKlTeA0vEAcaOi8ZASUt6glIPTGxdKXzyNvFc-pByPOh8jGLRyP1_fC1vcx5i9Iet2-3RbXVm1S3D3F6fV5_N89bSol-8vr0-Py1rThud6GKjtRMtEz9TQdEwTgYkyZADRdoa1jFsgBiwdMFNm6KAnujHtwC0lgnFGp9XsPHetdiCdtyFHpYsZ2DsdPJRrQD7Stqe0bOEFIGdAx5BSBCsP0e1VPEmC5SixPEssi8RylFiOS5ozk0qvX0OU23CMvvz1D_QLoqGDnw</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Pogrebnyak, A. D.</creator><creator>Beresnev, V. M.</creator><creator>Shpak, A. P.</creator><creator>Konarskii, P.</creator><creator>Komarov, F. F.</creator><creator>Kirik, G. V.</creator><creator>Makhmudov, N. A.</creator><creator>Kolesnikov, D. A.</creator><creator>Uglov, V. V.</creator><creator>Sobol, O. V.</creator><creator>Kaverin, M. V.</creator><creator>Grudnitskii, V. V.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120401</creationdate><title>Effect of deposition parameters on the superhardness and stoichiometry of nanostructured Ti–Hf–Si–N films</title><author>Pogrebnyak, A. D. ; Beresnev, V. M. ; Shpak, A. P. ; Konarskii, P. ; Komarov, F. F. ; Kirik, G. V. ; Makhmudov, N. A. ; Kolesnikov, D. A. ; Uglov, V. V. ; Sobol, O. V. ; Kaverin, M. V. ; Grudnitskii, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-bb3f6854894ab264c1801ad1be856d4547fe1def3b04adb6e91c2d5b7f3184743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Coatings</topic><topic>Coatings industry</topic><topic>Condensed Matter Physics</topic><topic>Hadrons</topic><topic>Hardness</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical properties</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pogrebnyak, A. D.</creatorcontrib><creatorcontrib>Beresnev, V. M.</creatorcontrib><creatorcontrib>Shpak, A. P.</creatorcontrib><creatorcontrib>Konarskii, P.</creatorcontrib><creatorcontrib>Komarov, F. F.</creatorcontrib><creatorcontrib>Kirik, G. V.</creatorcontrib><creatorcontrib>Makhmudov, N. A.</creatorcontrib><creatorcontrib>Kolesnikov, D. A.</creatorcontrib><creatorcontrib>Uglov, V. V.</creatorcontrib><creatorcontrib>Sobol, O. V.</creatorcontrib><creatorcontrib>Kaverin, M. V.</creatorcontrib><creatorcontrib>Grudnitskii, V. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pogrebnyak, A. D.</au><au>Beresnev, V. M.</au><au>Shpak, A. P.</au><au>Konarskii, P.</au><au>Komarov, F. F.</au><au>Kirik, G. V.</au><au>Makhmudov, N. A.</au><au>Kolesnikov, D. A.</au><au>Uglov, V. V.</au><au>Sobol, O. V.</au><au>Kaverin, M. V.</au><au>Grudnitskii, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of deposition parameters on the superhardness and stoichiometry of nanostructured Ti–Hf–Si–N films</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>54</volume><issue>11</issue><spage>1218</spage><epage>1225</epage><pages>1218-1225</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>Superhard nanostructured Ti–Hf–Si–N coatings (films) possessing high physical and mechanical properties have been produced. Nuclear and atomic physical analyses, such as RBS, SIMS, GDMS, SEM-EDXS, XRD, and nanoindentation were used to investigate the elemental and phase composition and the morphology of the films as functions of the pressure in the chamber and of the bias voltage applied to the substrate. It was observed that as the grain size in nc-(Ti, Hf)N coatings was decreased from 6.7 to 5 nm and α-Si
3
N
4
(amorphous or quasi-amorphous phase interlayer between nanograins) formed, the coating nanohardness increased from 42.7 to 48.4 ± 1.6 GPa. However, the further decrease of the (Ti, Hf)N grain size to 4.0 nm resulted in a slight decrease in nanohardness. The stoichiometry of the films changes from (Ti
40
–Hf
9
–Si
7.5
)N
46
to (Ti
28
–Hf
18
–Si
9
)N
45
, and also changed the lattice parameter of the (Ti, Hf)N solid solution. It should be noted that the high-hardness coatings showed the least friction coefficient (0.2), and its value remained unchanged until the coating worn out.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11182-012-9734-4</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8887 |
ispartof | Russian physics journal, 2012-04, Vol.54 (11), p.1218-1225 |
issn | 1064-8887 1573-9228 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A359334897 |
source | Springer Nature |
subjects | Analysis Coatings Coatings industry Condensed Matter Physics Hadrons Hardness Heavy Ions Lasers Mathematical and Computational Physics Mechanical properties Nuclear Physics Optical Devices Optics Photonics Physics Physics and Astronomy Theoretical |
title | Effect of deposition parameters on the superhardness and stoichiometry of nanostructured Ti–Hf–Si–N films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20deposition%20parameters%20on%20the%20superhardness%20and%20stoichiometry%20of%20nanostructured%20Ti%E2%80%93Hf%E2%80%93Si%E2%80%93N%20films&rft.jtitle=Russian%20physics%20journal&rft.au=Pogrebnyak,%20A.%20D.&rft.date=2012-04-01&rft.volume=54&rft.issue=11&rft.spage=1218&rft.epage=1225&rft.pages=1218-1225&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-012-9734-4&rft_dat=%3Cgale_cross%3EA359334897%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-bb3f6854894ab264c1801ad1be856d4547fe1def3b04adb6e91c2d5b7f3184743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A359334897&rfr_iscdi=true |