Loading…

Predicting Individual Behavior with Social Networks

With the availability of social network data, it has become possible to relate the behavior of individuals to that of their acquaintances on a large scale. Although the similarity of connected individuals is well established, it is unclear whether behavioral predictions based on social data are more...

Full description

Saved in:
Bibliographic Details
Published in:Marketing science (Providence, R.I.) R.I.), 2014-01, Vol.33 (1), p.82-93
Main Authors: Goel, Sharad, Goldstein, Daniel G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c533t-7bb4637bf0610885c827fa9767ec02443b9cf98ec15840c39f958e91a6a30ead3
cites cdi_FETCH-LOGICAL-c533t-7bb4637bf0610885c827fa9767ec02443b9cf98ec15840c39f958e91a6a30ead3
container_end_page 93
container_issue 1
container_start_page 82
container_title Marketing science (Providence, R.I.)
container_volume 33
creator Goel, Sharad
Goldstein, Daniel G.
description With the availability of social network data, it has become possible to relate the behavior of individuals to that of their acquaintances on a large scale. Although the similarity of connected individuals is well established, it is unclear whether behavioral predictions based on social data are more accurate than those arising from current marketing practices. We employ a communications network of over 100 million people to forecast highly diverse behaviors, from patronizing an off-line department store to responding to advertising to joining a recreational league. Across all domains, we find that social data are informative in identifying individuals who are most likely to undertake various actions, and moreover, such data improve on both demographic and behavioral models. There are, however, limits to the utility of social data.In particular, when rich transactional data were available, social data did little to improve prediction.
doi_str_mv 10.1287/mksc.2013.0817
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A359612691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A359612691</galeid><jstor_id>24544789</jstor_id><sourcerecordid>A359612691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-7bb4637bf0610885c827fa9767ec02443b9cf98ec15840c39f958e91a6a30ead3</originalsourceid><addsrcrecordid>eNqFkd1r2zAUxcVYYVm2170NAn2dM31a0mMb-gVhK7SDvQlZlh2lsZXq2gn972vT0bQQGAIJDr9z7hUHoW8EzwlV8mfzAG5OMWFzrIj8gCZE0DwTXP39iCZYMppRpvUn9BlgjTGWFKsJYrfJl8F1oa1nN20ZdqHs7WZ27ld2F2Ka7UO3mt1FFwbxl-_2MT3AF3RS2Q34r__eKfpzeXG_uM6Wv69uFmfLzAnGukwWBc-ZLCqcE6yUcIrKymqZS-8w5ZwV2lVaeUeE4tgxXWmhvCY2twx7W7IpOn3J3ab42HvozDr2qR1GGiIw1pxqlR-o2m68CW0Vu2RdE8CZMyZ0TmiuyUBlR6jatz7ZTWx9FQb5HT8_wg-n9E1wRw0_3hiKHkLrYbgg1KsOatsDHM13KQIkX5ltCo1NT4ZgM9ZpxjrNWKcZ6xwM318Ma-hieqUpF5xLpQ8fHHdNDfwv7xmTU6gt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1500942986</pqid></control><display><type>article</type><title>Predicting Individual Behavior with Social Networks</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate</source><source>Informs</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Goel, Sharad ; Goldstein, Daniel G.</creator><creatorcontrib>Goel, Sharad ; Goldstein, Daniel G.</creatorcontrib><description>With the availability of social network data, it has become possible to relate the behavior of individuals to that of their acquaintances on a large scale. Although the similarity of connected individuals is well established, it is unclear whether behavioral predictions based on social data are more accurate than those arising from current marketing practices. We employ a communications network of over 100 million people to forecast highly diverse behaviors, from patronizing an off-line department store to responding to advertising to joining a recreational league. Across all domains, we find that social data are informative in identifying individuals who are most likely to undertake various actions, and moreover, such data improve on both demographic and behavioral models. There are, however, limits to the utility of social data.In particular, when rich transactional data were available, social data did little to improve prediction.</description><identifier>ISSN: 0732-2399</identifier><identifier>EISSN: 1526-548X</identifier><identifier>DOI: 10.1287/mksc.2013.0817</identifier><identifier>CODEN: MARSE5</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Advertising campaigns ; Analysis ; Behavior ; Behavior modeling ; computational social science ; Customer services ; Customers ; Demography ; electronic commerce ; homophily ; Human acts ; Human behavior ; Internet advertising ; Marketing ; Online social networking ; Predictions ; product ; Purchasing ; Social influence ; Social networks ; Studies ; targeting ; Television advertising ; Theory and Practice in Marketing Conference Special Section</subject><ispartof>Marketing science (Providence, R.I.), 2014-01, Vol.33 (1), p.82-93</ispartof><rights>2014 INFORMS</rights><rights>COPYRIGHT 2014 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Jan/Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-7bb4637bf0610885c827fa9767ec02443b9cf98ec15840c39f958e91a6a30ead3</citedby><cites>FETCH-LOGICAL-c533t-7bb4637bf0610885c827fa9767ec02443b9cf98ec15840c39f958e91a6a30ead3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24544789$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mksc.2013.0817$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,777,781,3679,27905,27906,33204,58219,58452,62595</link.rule.ids></links><search><creatorcontrib>Goel, Sharad</creatorcontrib><creatorcontrib>Goldstein, Daniel G.</creatorcontrib><title>Predicting Individual Behavior with Social Networks</title><title>Marketing science (Providence, R.I.)</title><description>With the availability of social network data, it has become possible to relate the behavior of individuals to that of their acquaintances on a large scale. Although the similarity of connected individuals is well established, it is unclear whether behavioral predictions based on social data are more accurate than those arising from current marketing practices. We employ a communications network of over 100 million people to forecast highly diverse behaviors, from patronizing an off-line department store to responding to advertising to joining a recreational league. Across all domains, we find that social data are informative in identifying individuals who are most likely to undertake various actions, and moreover, such data improve on both demographic and behavioral models. There are, however, limits to the utility of social data.In particular, when rich transactional data were available, social data did little to improve prediction.</description><subject>Advertising campaigns</subject><subject>Analysis</subject><subject>Behavior</subject><subject>Behavior modeling</subject><subject>computational social science</subject><subject>Customer services</subject><subject>Customers</subject><subject>Demography</subject><subject>electronic commerce</subject><subject>homophily</subject><subject>Human acts</subject><subject>Human behavior</subject><subject>Internet advertising</subject><subject>Marketing</subject><subject>Online social networking</subject><subject>Predictions</subject><subject>product</subject><subject>Purchasing</subject><subject>Social influence</subject><subject>Social networks</subject><subject>Studies</subject><subject>targeting</subject><subject>Television advertising</subject><subject>Theory and Practice in Marketing Conference Special Section</subject><issn>0732-2399</issn><issn>1526-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkd1r2zAUxcVYYVm2170NAn2dM31a0mMb-gVhK7SDvQlZlh2lsZXq2gn972vT0bQQGAIJDr9z7hUHoW8EzwlV8mfzAG5OMWFzrIj8gCZE0DwTXP39iCZYMppRpvUn9BlgjTGWFKsJYrfJl8F1oa1nN20ZdqHs7WZ27ld2F2Ka7UO3mt1FFwbxl-_2MT3AF3RS2Q34r__eKfpzeXG_uM6Wv69uFmfLzAnGukwWBc-ZLCqcE6yUcIrKymqZS-8w5ZwV2lVaeUeE4tgxXWmhvCY2twx7W7IpOn3J3ab42HvozDr2qR1GGiIw1pxqlR-o2m68CW0Vu2RdE8CZMyZ0TmiuyUBlR6jatz7ZTWx9FQb5HT8_wg-n9E1wRw0_3hiKHkLrYbgg1KsOatsDHM13KQIkX5ltCo1NT4ZgM9ZpxjrNWKcZ6xwM318Ma-hieqUpF5xLpQ8fHHdNDfwv7xmTU6gt</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Goel, Sharad</creator><creator>Goldstein, Daniel G.</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201401</creationdate><title>Predicting Individual Behavior with Social Networks</title><author>Goel, Sharad ; Goldstein, Daniel G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-7bb4637bf0610885c827fa9767ec02443b9cf98ec15840c39f958e91a6a30ead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Advertising campaigns</topic><topic>Analysis</topic><topic>Behavior</topic><topic>Behavior modeling</topic><topic>computational social science</topic><topic>Customer services</topic><topic>Customers</topic><topic>Demography</topic><topic>electronic commerce</topic><topic>homophily</topic><topic>Human acts</topic><topic>Human behavior</topic><topic>Internet advertising</topic><topic>Marketing</topic><topic>Online social networking</topic><topic>Predictions</topic><topic>product</topic><topic>Purchasing</topic><topic>Social influence</topic><topic>Social networks</topic><topic>Studies</topic><topic>targeting</topic><topic>Television advertising</topic><topic>Theory and Practice in Marketing Conference Special Section</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goel, Sharad</creatorcontrib><creatorcontrib>Goldstein, Daniel G.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business Insights</collection><collection>Business Insights: Essentials</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Marketing science (Providence, R.I.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goel, Sharad</au><au>Goldstein, Daniel G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Individual Behavior with Social Networks</atitle><jtitle>Marketing science (Providence, R.I.)</jtitle><date>2014-01</date><risdate>2014</risdate><volume>33</volume><issue>1</issue><spage>82</spage><epage>93</epage><pages>82-93</pages><issn>0732-2399</issn><eissn>1526-548X</eissn><coden>MARSE5</coden><abstract>With the availability of social network data, it has become possible to relate the behavior of individuals to that of their acquaintances on a large scale. Although the similarity of connected individuals is well established, it is unclear whether behavioral predictions based on social data are more accurate than those arising from current marketing practices. We employ a communications network of over 100 million people to forecast highly diverse behaviors, from patronizing an off-line department store to responding to advertising to joining a recreational league. Across all domains, we find that social data are informative in identifying individuals who are most likely to undertake various actions, and moreover, such data improve on both demographic and behavioral models. There are, however, limits to the utility of social data.In particular, when rich transactional data were available, social data did little to improve prediction.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/mksc.2013.0817</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0732-2399
ispartof Marketing science (Providence, R.I.), 2014-01, Vol.33 (1), p.82-93
issn 0732-2399
1526-548X
language eng
recordid cdi_gale_infotracacademiconefile_A359612691
source International Bibliography of the Social Sciences (IBSS); Business Source Ultimate; Informs; JSTOR Archival Journals and Primary Sources Collection
subjects Advertising campaigns
Analysis
Behavior
Behavior modeling
computational social science
Customer services
Customers
Demography
electronic commerce
homophily
Human acts
Human behavior
Internet advertising
Marketing
Online social networking
Predictions
product
Purchasing
Social influence
Social networks
Studies
targeting
Television advertising
Theory and Practice in Marketing Conference Special Section
title Predicting Individual Behavior with Social Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Individual%20Behavior%20with%20Social%20Networks&rft.jtitle=Marketing%20science%20(Providence,%20R.I.)&rft.au=Goel,%20Sharad&rft.date=2014-01&rft.volume=33&rft.issue=1&rft.spage=82&rft.epage=93&rft.pages=82-93&rft.issn=0732-2399&rft.eissn=1526-548X&rft.coden=MARSE5&rft_id=info:doi/10.1287/mksc.2013.0817&rft_dat=%3Cgale_cross%3EA359612691%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c533t-7bb4637bf0610885c827fa9767ec02443b9cf98ec15840c39f958e91a6a30ead3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1500942986&rft_id=info:pmid/&rft_galeid=A359612691&rft_jstor_id=24544789&rfr_iscdi=true