Loading…

Sharp Kolmogorov-type inequalities for norms of fractional derivatives of multivariate functions

Let be the space of bounded and continuous functions equipped with the norm and let e j , j = 1,…, m , be a standard basis in : Given moduli of continuity ω j , j = 1,…, m , denote We obtain new sharp Kolmogorov-type inequalities for the norms of mixed fractional derivatives of functions . Some appl...

Full description

Saved in:
Bibliographic Details
Published in:Ukrainian mathematical journal 2010-10, Vol.62 (3), p.343-357
Main Authors: Babenko, V. F., Parfinovych, N.V., Pichugov, S. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-2a3cae66cce5269f7d0a27eecf23d0cfa08412bbb4c5cd466546a5f539cfabcb3
cites cdi_FETCH-LOGICAL-c370t-2a3cae66cce5269f7d0a27eecf23d0cfa08412bbb4c5cd466546a5f539cfabcb3
container_end_page 357
container_issue 3
container_start_page 343
container_title Ukrainian mathematical journal
container_volume 62
creator Babenko, V. F.
Parfinovych, N.V.
Pichugov, S. A.
description Let be the space of bounded and continuous functions equipped with the norm and let e j , j = 1,…, m , be a standard basis in : Given moduli of continuity ω j , j = 1,…, m , denote We obtain new sharp Kolmogorov-type inequalities for the norms of mixed fractional derivatives of functions . Some applications of these inequalities are presented.
doi_str_mv 10.1007/s11253-010-0358-y
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A359852489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A359852489</galeid><sourcerecordid>A359852489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-2a3cae66cce5269f7d0a27eecf23d0cfa08412bbb4c5cd466546a5f539cfabcb3</originalsourceid><addsrcrecordid>eNp9kMlOwzAURS0EEqXwAez8Ay4e4gzLqmISlVgAa-M4z8VVEhc7qZS_xzSskRe2fO95ejoI3TK6YpQWd5ExLgWhjBIqZEmmM7RgshCkEkV-jhaUZozIqpKX6CrGPU1FWhYL9Pn2pcMBv_i28zsf_JEM0wGw6-F71K0bHERsfcC9D13E3mIbtBmc73WLGwjuqAd3hFPSjW166-D0ANiO_akWr9GF1W2Em797iT4e7t83T2T7-vi8WW-JEQUdCNfCaMhzY0DyvLJFQzUvAIzloqHGalpmjNd1nRlpmizPZZZraaWoUlabWizRap670y0o11s_pE3TaaBzxvdgXfpfC1mVkmdllQA2Ayb4GANYdQiu02FSjKpfp2p2qpIq9etUTYnhMxNTt99BUHs_huQi_gP9ACmvffk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sharp Kolmogorov-type inequalities for norms of fractional derivatives of multivariate functions</title><source>Springer Nature</source><creator>Babenko, V. F. ; Parfinovych, N.V. ; Pichugov, S. A.</creator><creatorcontrib>Babenko, V. F. ; Parfinovych, N.V. ; Pichugov, S. A.</creatorcontrib><description>Let be the space of bounded and continuous functions equipped with the norm and let e j , j = 1,…, m , be a standard basis in : Given moduli of continuity ω j , j = 1,…, m , denote We obtain new sharp Kolmogorov-type inequalities for the norms of mixed fractional derivatives of functions . Some applications of these inequalities are presented.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-010-0358-y</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Geometry ; Mathematics ; Mathematics and Statistics ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2010-10, Vol.62 (3), p.343-357</ispartof><rights>Springer Science+Business Media, Inc. 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-2a3cae66cce5269f7d0a27eecf23d0cfa08412bbb4c5cd466546a5f539cfabcb3</citedby><cites>FETCH-LOGICAL-c370t-2a3cae66cce5269f7d0a27eecf23d0cfa08412bbb4c5cd466546a5f539cfabcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Babenko, V. F.</creatorcontrib><creatorcontrib>Parfinovych, N.V.</creatorcontrib><creatorcontrib>Pichugov, S. A.</creatorcontrib><title>Sharp Kolmogorov-type inequalities for norms of fractional derivatives of multivariate functions</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>Let be the space of bounded and continuous functions equipped with the norm and let e j , j = 1,…, m , be a standard basis in : Given moduli of continuity ω j , j = 1,…, m , denote We obtain new sharp Kolmogorov-type inequalities for the norms of mixed fractional derivatives of functions . Some applications of these inequalities are presented.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAURS0EEqXwAez8Ay4e4gzLqmISlVgAa-M4z8VVEhc7qZS_xzSskRe2fO95ejoI3TK6YpQWd5ExLgWhjBIqZEmmM7RgshCkEkV-jhaUZozIqpKX6CrGPU1FWhYL9Pn2pcMBv_i28zsf_JEM0wGw6-F71K0bHERsfcC9D13E3mIbtBmc73WLGwjuqAd3hFPSjW166-D0ANiO_akWr9GF1W2Em797iT4e7t83T2T7-vi8WW-JEQUdCNfCaMhzY0DyvLJFQzUvAIzloqHGalpmjNd1nRlpmizPZZZraaWoUlabWizRap670y0o11s_pE3TaaBzxvdgXfpfC1mVkmdllQA2Ayb4GANYdQiu02FSjKpfp2p2qpIq9etUTYnhMxNTt99BUHs_huQi_gP9ACmvffk</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Babenko, V. F.</creator><creator>Parfinovych, N.V.</creator><creator>Pichugov, S. A.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20101001</creationdate><title>Sharp Kolmogorov-type inequalities for norms of fractional derivatives of multivariate functions</title><author>Babenko, V. F. ; Parfinovych, N.V. ; Pichugov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-2a3cae66cce5269f7d0a27eecf23d0cfa08412bbb4c5cd466546a5f539cfabcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babenko, V. F.</creatorcontrib><creatorcontrib>Parfinovych, N.V.</creatorcontrib><creatorcontrib>Pichugov, S. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babenko, V. F.</au><au>Parfinovych, N.V.</au><au>Pichugov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp Kolmogorov-type inequalities for norms of fractional derivatives of multivariate functions</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>62</volume><issue>3</issue><spage>343</spage><epage>357</epage><pages>343-357</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>Let be the space of bounded and continuous functions equipped with the norm and let e j , j = 1,…, m , be a standard basis in : Given moduli of continuity ω j , j = 1,…, m , denote We obtain new sharp Kolmogorov-type inequalities for the norms of mixed fractional derivatives of functions . Some applications of these inequalities are presented.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11253-010-0358-y</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0041-5995
ispartof Ukrainian mathematical journal, 2010-10, Vol.62 (3), p.343-357
issn 0041-5995
1573-9376
language eng
recordid cdi_gale_infotracacademiconefile_A359852489
source Springer Nature
subjects Algebra
Analysis
Applications of Mathematics
Geometry
Mathematics
Mathematics and Statistics
Statistics
title Sharp Kolmogorov-type inequalities for norms of fractional derivatives of multivariate functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20Kolmogorov-type%20inequalities%20for%20norms%20of%20fractional%20derivatives%20of%20multivariate%20functions&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Babenko,%20V.%20F.&rft.date=2010-10-01&rft.volume=62&rft.issue=3&rft.spage=343&rft.epage=357&rft.pages=343-357&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-010-0358-y&rft_dat=%3Cgale_cross%3EA359852489%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-2a3cae66cce5269f7d0a27eecf23d0cfa08412bbb4c5cd466546a5f539cfabcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A359852489&rfr_iscdi=true