Loading…

Change in the magnetic properties of polycrystalline thin-film magnetite upon introduction of an iron sublayer

The field dependences of the magnetic moment of polycrystalline magnetite films formed by pulsed laser deposition on a silicon substrate with the addition of an iron sublayer have been investigated. The influence of the sequence of layers Fe/Fe 3 O 4 and Fe 3 O 4 /Fe on the magnetic characteristics...

Full description

Saved in:
Bibliographic Details
Published in:Physics of the solid state 2012-06, Vol.54 (6), p.1153-1159
Main Authors: Anisimov, A. V., Goikhman, A. Yu, Kupriyanova, G. S., Nevolin, V. N., Popov, A. P., Rodionova, V. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The field dependences of the magnetic moment of polycrystalline magnetite films formed by pulsed laser deposition on a silicon substrate with the addition of an iron sublayer have been investigated. The influence of the sequence of layers Fe/Fe 3 O 4 and Fe 3 O 4 /Fe on the magnetic characteristics of these structures has been analyzed. It has turned out that an increase in the saturation magnetization and the formation of a rectangular hysteresis loop with the coercive force acceptable for applications of thin-film magnetite as a hard magnetic electrode of the magnetic tunnel junction are observed only for the sequence of layers Fe/Fe 3 O 4 . The effect of the vacuum annealing temperature on the magnetic properties of polycrystalline samples of the Fe/Fe 3 O 4 structure has been studied. It has been found that the best result is achieved at an annealing temperature of 500°C. The phenomenological model describing the magnetic properties of the polycrystalline two-layer magnetic structure Fe/Fe 3 O 4 has been formulated. The results of numerical calculations have demonstrated that the introduction of only two phenomenological anisotropic interactions into the expression for the energy of the film provides a qualitative description of the observed experimental data in the form of hysteresis loops.
ISSN:1063-7834
1090-6460
DOI:10.1134/S1063783412060030