Loading…

Theoretical studies of electronic structure and structural properties of anhydrous alkali metal oxalates: Part II. Electronic structure and bonding properties versus thermal decomposition pathway

The theoretical analysis of electronic structure and bonding properties of anhydrous alkali metal oxalates, based on the results of DFT FP-LAPW calculations, Bader’s QTAIM topological properties of electron density, Cioslowski and Mixon’s topological bond orders [reported in the first part of this p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2014, Vol.115 (1), p.841-852
Main Authors: Kolezynski, A, Malecki, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c350t-17a70fce3936a03ab6d190c821143202eb02a661c51b1ba0aa2dfe301d41881b3
container_end_page 852
container_issue 1
container_start_page 841
container_title Journal of thermal analysis and calorimetry
container_volume 115
creator Kolezynski, A
Malecki, A
description The theoretical analysis of electronic structure and bonding properties of anhydrous alkali metal oxalates, based on the results of DFT FP-LAPW calculations, Bader’s QTAIM topological properties of electron density, Cioslowski and Mixon’s topological bond orders [reported in the first part of this paper by Koleżyński (doi: 10.1007/s10973-013-3126-z )] and Brown’s Bond Valence Model calculations, carried out in the light of thermal decomposition pathway characteristic for these compounds are presented. The obtained results shed some additional light on the origins of the complex pathway observed during thermal decomposition process (two stage process, first the formation of respective carbonate and then decomposition to metal oxide and carbon dioxide). For all structures analyzed, strong similarities in electronic structure and bonding properties were found (ionic-covalent bonds in oxalate anion with C–C bond as the weakest one in entire structure and almost purely ionic between oxalate group and alkali metal cations), allowing us to propose the most probable pathway consisting of consecutive steps, leading to carbonate anion formation with simultaneous cationic sublattice relaxations, which results in relative ease of respective metal carbonate formation.
doi_str_mv 10.1007/s10973-013-3210-4
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A362848843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A362848843</galeid><sourcerecordid>A362848843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-17a70fce3936a03ab6d190c821143202eb02a661c51b1ba0aa2dfe301d41881b3</originalsourceid><addsrcrecordid>eNp9kU1rwkAQhkNpodb2B_SWaw-xM7sxJkeRfghCobXnZbKZaGzMyu4G9N93RSl4KXOY2eF55rBvFD0ijBBg8uwQiolMAGUiBUKSXkUDHOd5IgqRXYdZhjnDMdxGd85tAKAoAAfRerlmY9k3mtrY-b5q2MWmjrll7a3pGh22tte-txxTV_29Ar6zZsfWnw3q1ofKmt7F1P5Q28Rb9gEye2rJs7uPbmpqHT-c-zD6fn1Zzt6TxcfbfDZdJFqOwSc4oQnUmmUhMwJJZVZhAToXiKkUILgEQVmGeowllgREoqpZAlYp5jmWchiNTndX1LJqutp4SzpUxdtGm47rJuynMhN5muepDMLThRAYz3u_ot45Nf_6vGTxxGprnLNcq51ttmQPCkEdc1CnHFTIQR1zUGlwxMlxge1WbNXG9LYLf_CP9AtepYwb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theoretical studies of electronic structure and structural properties of anhydrous alkali metal oxalates: Part II. Electronic structure and bonding properties versus thermal decomposition pathway</title><source>Springer Nature</source><creator>Kolezynski, A ; Malecki, A</creator><creatorcontrib>Kolezynski, A ; Malecki, A</creatorcontrib><description>The theoretical analysis of electronic structure and bonding properties of anhydrous alkali metal oxalates, based on the results of DFT FP-LAPW calculations, Bader’s QTAIM topological properties of electron density, Cioslowski and Mixon’s topological bond orders [reported in the first part of this paper by Koleżyński (doi: 10.1007/s10973-013-3126-z )] and Brown’s Bond Valence Model calculations, carried out in the light of thermal decomposition pathway characteristic for these compounds are presented. The obtained results shed some additional light on the origins of the complex pathway observed during thermal decomposition process (two stage process, first the formation of respective carbonate and then decomposition to metal oxide and carbon dioxide). For all structures analyzed, strong similarities in electronic structure and bonding properties were found (ionic-covalent bonds in oxalate anion with C–C bond as the weakest one in entire structure and almost purely ionic between oxalate group and alkali metal cations), allowing us to propose the most probable pathway consisting of consecutive steps, leading to carbonate anion formation with simultaneous cationic sublattice relaxations, which results in relative ease of respective metal carbonate formation.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-013-3210-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Analytical Chemistry ; Carbonates ; Chemistry ; Chemistry and Materials Science ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Oxalates ; Oxalic acid ; Physical Chemistry ; Polymer Sciences</subject><ispartof>Journal of thermal analysis and calorimetry, 2014, Vol.115 (1), p.841-852</ispartof><rights>The Author(s) 2013</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-17a70fce3936a03ab6d190c821143202eb02a661c51b1ba0aa2dfe301d41881b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kolezynski, A</creatorcontrib><creatorcontrib>Malecki, A</creatorcontrib><title>Theoretical studies of electronic structure and structural properties of anhydrous alkali metal oxalates: Part II. Electronic structure and bonding properties versus thermal decomposition pathway</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The theoretical analysis of electronic structure and bonding properties of anhydrous alkali metal oxalates, based on the results of DFT FP-LAPW calculations, Bader’s QTAIM topological properties of electron density, Cioslowski and Mixon’s topological bond orders [reported in the first part of this paper by Koleżyński (doi: 10.1007/s10973-013-3126-z )] and Brown’s Bond Valence Model calculations, carried out in the light of thermal decomposition pathway characteristic for these compounds are presented. The obtained results shed some additional light on the origins of the complex pathway observed during thermal decomposition process (two stage process, first the formation of respective carbonate and then decomposition to metal oxide and carbon dioxide). For all structures analyzed, strong similarities in electronic structure and bonding properties were found (ionic-covalent bonds in oxalate anion with C–C bond as the weakest one in entire structure and almost purely ionic between oxalate group and alkali metal cations), allowing us to propose the most probable pathway consisting of consecutive steps, leading to carbonate anion formation with simultaneous cationic sublattice relaxations, which results in relative ease of respective metal carbonate formation.</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Carbonates</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Oxalates</subject><subject>Oxalic acid</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rwkAQhkNpodb2B_SWaw-xM7sxJkeRfghCobXnZbKZaGzMyu4G9N93RSl4KXOY2eF55rBvFD0ijBBg8uwQiolMAGUiBUKSXkUDHOd5IgqRXYdZhjnDMdxGd85tAKAoAAfRerlmY9k3mtrY-b5q2MWmjrll7a3pGh22tte-txxTV_29Ar6zZsfWnw3q1ofKmt7F1P5Q28Rb9gEye2rJs7uPbmpqHT-c-zD6fn1Zzt6TxcfbfDZdJFqOwSc4oQnUmmUhMwJJZVZhAToXiKkUILgEQVmGeowllgREoqpZAlYp5jmWchiNTndX1LJqutp4SzpUxdtGm47rJuynMhN5muepDMLThRAYz3u_ot45Nf_6vGTxxGprnLNcq51ttmQPCkEdc1CnHFTIQR1zUGlwxMlxge1WbNXG9LYLf_CP9AtepYwb</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Kolezynski, A</creator><creator>Malecki, A</creator><general>Springer Netherlands</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>2014</creationdate><title>Theoretical studies of electronic structure and structural properties of anhydrous alkali metal oxalates</title><author>Kolezynski, A ; Malecki, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-17a70fce3936a03ab6d190c821143202eb02a661c51b1ba0aa2dfe301d41881b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Carbonates</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Oxalates</topic><topic>Oxalic acid</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolezynski, A</creatorcontrib><creatorcontrib>Malecki, A</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolezynski, A</au><au>Malecki, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical studies of electronic structure and structural properties of anhydrous alkali metal oxalates: Part II. Electronic structure and bonding properties versus thermal decomposition pathway</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2014</date><risdate>2014</risdate><volume>115</volume><issue>1</issue><spage>841</spage><epage>852</epage><pages>841-852</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The theoretical analysis of electronic structure and bonding properties of anhydrous alkali metal oxalates, based on the results of DFT FP-LAPW calculations, Bader’s QTAIM topological properties of electron density, Cioslowski and Mixon’s topological bond orders [reported in the first part of this paper by Koleżyński (doi: 10.1007/s10973-013-3126-z )] and Brown’s Bond Valence Model calculations, carried out in the light of thermal decomposition pathway characteristic for these compounds are presented. The obtained results shed some additional light on the origins of the complex pathway observed during thermal decomposition process (two stage process, first the formation of respective carbonate and then decomposition to metal oxide and carbon dioxide). For all structures analyzed, strong similarities in electronic structure and bonding properties were found (ionic-covalent bonds in oxalate anion with C–C bond as the weakest one in entire structure and almost purely ionic between oxalate group and alkali metal cations), allowing us to propose the most probable pathway consisting of consecutive steps, leading to carbonate anion formation with simultaneous cationic sublattice relaxations, which results in relative ease of respective metal carbonate formation.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10973-013-3210-4</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2014, Vol.115 (1), p.841-852
issn 1388-6150
1588-2926
language eng
recordid cdi_gale_infotracacademiconefile_A362848843
source Springer Nature
subjects Analysis
Analytical Chemistry
Carbonates
Chemistry
Chemistry and Materials Science
Inorganic Chemistry
Measurement Science and Instrumentation
Oxalates
Oxalic acid
Physical Chemistry
Polymer Sciences
title Theoretical studies of electronic structure and structural properties of anhydrous alkali metal oxalates: Part II. Electronic structure and bonding properties versus thermal decomposition pathway
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20studies%20of%20electronic%20structure%20and%20structural%20properties%20of%20anhydrous%20alkali%20metal%20oxalates:%20Part%20II.%20Electronic%20structure%20and%20bonding%20properties%20versus%20thermal%20decomposition%20pathway&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Kolezynski,%20A&rft.date=2014&rft.volume=115&rft.issue=1&rft.spage=841&rft.epage=852&rft.pages=841-852&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-013-3210-4&rft_dat=%3Cgale_cross%3EA362848843%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-17a70fce3936a03ab6d190c821143202eb02a661c51b1ba0aa2dfe301d41881b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A362848843&rfr_iscdi=true