Loading…
Enhanced mineralization of gaseous organic pollutant by photo-oxidation using Au-doped Ti[O.sub.2]/MCM-41
The synthesis, characterization, and photocatalytic evaluation of titania-loaded MCM-41 with and without Au doping are reported in the present study. The samples were characterized by powder XRD, TEM, low temperature N2 adsorption/desorption, UV-Vis, and FTIR. UV-induced vapor-phase photo-oxidation...
Saved in:
Published in: | Water, air, and soil pollution air, and soil pollution, 2014-02, Vol.225 (2) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The synthesis, characterization, and photocatalytic evaluation of titania-loaded MCM-41 with and without Au doping are reported in the present study. The samples were characterized by powder XRD, TEM, low temperature N2 adsorption/desorption, UV-Vis, and FTIR. UV-induced vapor-phase photo-oxidation of acetone was used as a probe reaction to study the role of Au in mineralization of volatile organic compounds (VOCs), viz. acetone at different concentrations. The doping of Au in titania-loaded MCM-41 resulted in the decrease of BET surface area, total pore volume, and average pore size. UV-Vis diffuse reflectance spectra of Au-doped titania-loaded MCM-41 showed the red shift in their absorption bands compared to titania-loaded MCM-41. The activity of mineralization of acetone by photocatalysis for 2 % Au-doped titania-loaded MCM-41 was found to be ~1.6 times higher than titania-loaded MCM-41. The presence of cocatalytic nanosized gold might be responsible for their enhanced activity on account of the delayed recombination of electron/hole pair. Although, almost complete mineralization of acetone was observed irrespective of the initial concentration of acetone in air (up to 3.72 mol%) by all the catalysts, 2 wt.% Au-doped titania-loaded MCM-41 has shown the most enhanced activity. Keywords Mineralization of VOCs * Photo-oxidation * Acetone * Ti[O.sub.2]/MCM-41 * Gold * Doping |
---|---|
ISSN: | 0049-6979 |
DOI: | 10.1007/s11270-013-1847-z |