Loading…

Application of land use regression modelling to assess the spatial distribution of road traffic noise in three European cities

Noise prediction models and noise maps are used to estimate the exposure to road traffic noise, but their availability and the quality of the noise estimates is sometimes limited. This paper explores the application of land use regression (LUR) modelling to assess the long-term intraurban spatial va...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Exposure Science and Environmental Epidemiology 2015, p.97
Main Authors: Aguilera, Inmaculada, Foraster, Maria, Basagana, Xavier, Corradi, Elisabetta, Deltell, Alexandre, Morelli, Xavier, Phuleria, Harish C, Ragettli, Ma, Rivera, Marcela, Thomasson, Alexandre, Slama, Remy, Kunzli, Nino
Format: Report
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Noise prediction models and noise maps are used to estimate the exposure to road traffic noise, but their availability and the quality of the noise estimates is sometimes limited. This paper explores the application of land use regression (LUR) modelling to assess the long-term intraurban spatial variability of road traffic noise in three European cities. Short-term measurements of road traffic noise taken in Basel, Switzerland (n = 60), Girona, Spain (n = 40), and Grenoble, France (n = 41), were used to develop two LUR models: (a) a "GIS-only" model, which considered only predictor variables derived with Geographic Information Systems; and (b) a "Best" model, which in addition considered the variables collected while visiting the measurement sites. Both noise measurements and noise estimates from LUR models were compared with noise estimates from standard noise models developed for each city by the local authorities. Model performance (adjusted [R.sup.2]) was 0.66-0.87 for "GIS-only" models, and 0.70-0.89 for "Best" models. Short-term noise measurements showed a high correlation (r =0.62-0.78) with noise estimates from the standard noise models. LUR noise estimates did not show any systematic differences in the spatial patterns when compared with those from standard noise models. LUR modelling with accurate GIS source data can be a promising tool for noise exposure assessment with applications in epidemiological studies. Journal of Exposure Science and Environmental Epidemiology (2015) 25,97-105; doi:10.1038/jes.2014.61; published online 17 September 2014 Keywords: traffic noise; noise propagation models; land use regression models; noise exposure
ISSN:1559-0631
DOI:10.1038/jes.2014.61