Loading…

Hidden Markov Model for Dependent Mark Loss and Survival Estimation

Mark-recapture estimators assume no loss of marks to provide unbiased estimates of population parameters. We describe a hidden Markov model (HMM) framework that integrates a mark loss model with a Cormack–Jolly–Seber model for survival estimation. Mark loss can be estimated with single-marked animal...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural, biological, and environmental statistics biological, and environmental statistics, 2014-12, Vol.19 (4), p.522-538
Main Authors: Laake, Jeffrey L, Johnson, Devin S, Diefenbach, Duane R, Ternent, Mark A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-ba0ebe95783a62dcc126cd4c1c289aa03ee53c0875502c3f496ed2c08ddf882f3
cites cdi_FETCH-LOGICAL-c477t-ba0ebe95783a62dcc126cd4c1c289aa03ee53c0875502c3f496ed2c08ddf882f3
container_end_page 538
container_issue 4
container_start_page 522
container_title Journal of agricultural, biological, and environmental statistics
container_volume 19
creator Laake, Jeffrey L
Johnson, Devin S
Diefenbach, Duane R
Ternent, Mark A
description Mark-recapture estimators assume no loss of marks to provide unbiased estimates of population parameters. We describe a hidden Markov model (HMM) framework that integrates a mark loss model with a Cormack–Jolly–Seber model for survival estimation. Mark loss can be estimated with single-marked animals as long as a sub-sample of animals has a permanent mark. Double-marking provides an estimate of mark loss assuming independence but dependence can be modeled with a permanently marked sub-sample. We use a log-linear approach to include covariates for mark loss and dependence which is more flexible than existing published methods for integrated models. The HMM approach is demonstrated with a dataset of black bears (Ursus americanus) with two ear tags and a subset of which were permanently marked with tattoos. The data were analyzed with and without the tattoo. Dropping the tattoos resulted in estimates of survival that were reduced by 0.005–0.035 due to tag loss dependence that could not be modeled. We also analyzed the data with and without the tattoo using a single tag. By not using.Supplementary materials accompanying this paper appear on-line.
doi_str_mv 10.1007/s13253-014-0190-1
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A396323453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A396323453</galeid><jstor_id>26452897</jstor_id><sourcerecordid>A396323453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-ba0ebe95783a62dcc126cd4c1c289aa03ee53c0875502c3f496ed2c08ddf882f3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxRdRsFY_gAdxrx62TpJNsnsstdpCi2DtOaT5s2xtNyXZFv32pq4IvUgYEua9X4Z5SXKLYIAA-GNABFOSAcpjlZChs6SHKOEZZiU5j28oaMYR4pfJVQhrAEQY4F4ymtRamyadS__hDuncabNJrfPpk9mZJirtj5TOXAipbHS62PtDfZCbdBzaeivb2jXXyYWVm2Bufu9-snwev48m2ez1ZToazjKVc95mKwlmZUrKCyIZ1kohzJTOFVK4KKUEYgwlCgpOKWBFbF4yo3FsaG2LAlvSTwbdv5XcGFE31rVeqni02dbKNcbWsT8kJSOY5JRE4OEEiJ7WfLaV3Icgpou3Uy_qvMrHVb2xYufjfv5LIBDHiEUXsYgRi2PEAkUGd0yI3qYyXqzd3jcxg3-huw5ah9b5vymY5TTmwKN-3-lWOiErXwexXGBAFAAKzGhBvgFC9Y-k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hidden Markov Model for Dependent Mark Loss and Survival Estimation</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Springer Nature</source><creator>Laake, Jeffrey L ; Johnson, Devin S ; Diefenbach, Duane R ; Ternent, Mark A</creator><creatorcontrib>Laake, Jeffrey L ; Johnson, Devin S ; Diefenbach, Duane R ; Ternent, Mark A</creatorcontrib><description>Mark-recapture estimators assume no loss of marks to provide unbiased estimates of population parameters. We describe a hidden Markov model (HMM) framework that integrates a mark loss model with a Cormack–Jolly–Seber model for survival estimation. Mark loss can be estimated with single-marked animals as long as a sub-sample of animals has a permanent mark. Double-marking provides an estimate of mark loss assuming independence but dependence can be modeled with a permanently marked sub-sample. We use a log-linear approach to include covariates for mark loss and dependence which is more flexible than existing published methods for integrated models. The HMM approach is demonstrated with a dataset of black bears (Ursus americanus) with two ear tags and a subset of which were permanently marked with tattoos. The data were analyzed with and without the tattoo. Dropping the tattoos resulted in estimates of survival that were reduced by 0.005–0.035 due to tag loss dependence that could not be modeled. We also analyzed the data with and without the tattoo using a single tag. By not using.Supplementary materials accompanying this paper appear on-line.</description><identifier>ISSN: 1085-7117</identifier><identifier>EISSN: 1537-2693</identifier><identifier>DOI: 10.1007/s13253-014-0190-1</identifier><language>eng</language><publisher>Boston: Springer-Verlag</publisher><subject>Agriculture ; Analysis ; animals ; Biostatistics ; Black bear ; Business losses ; data collection ; ear tags ; Health Sciences ; Markov processes ; Mathematics and Statistics ; Medicine ; Monitoring/Environmental Analysis ; Statistics ; Statistics for Life Sciences ; Ursus americanus</subject><ispartof>Journal of agricultural, biological, and environmental statistics, 2014-12, Vol.19 (4), p.522-538</ispartof><rights>2014 International Biometric Society</rights><rights>International Biometric Society 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-ba0ebe95783a62dcc126cd4c1c289aa03ee53c0875502c3f496ed2c08ddf882f3</citedby><cites>FETCH-LOGICAL-c477t-ba0ebe95783a62dcc126cd4c1c289aa03ee53c0875502c3f496ed2c08ddf882f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26452897$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26452897$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids></links><search><creatorcontrib>Laake, Jeffrey L</creatorcontrib><creatorcontrib>Johnson, Devin S</creatorcontrib><creatorcontrib>Diefenbach, Duane R</creatorcontrib><creatorcontrib>Ternent, Mark A</creatorcontrib><title>Hidden Markov Model for Dependent Mark Loss and Survival Estimation</title><title>Journal of agricultural, biological, and environmental statistics</title><addtitle>JABES</addtitle><description>Mark-recapture estimators assume no loss of marks to provide unbiased estimates of population parameters. We describe a hidden Markov model (HMM) framework that integrates a mark loss model with a Cormack–Jolly–Seber model for survival estimation. Mark loss can be estimated with single-marked animals as long as a sub-sample of animals has a permanent mark. Double-marking provides an estimate of mark loss assuming independence but dependence can be modeled with a permanently marked sub-sample. We use a log-linear approach to include covariates for mark loss and dependence which is more flexible than existing published methods for integrated models. The HMM approach is demonstrated with a dataset of black bears (Ursus americanus) with two ear tags and a subset of which were permanently marked with tattoos. The data were analyzed with and without the tattoo. Dropping the tattoos resulted in estimates of survival that were reduced by 0.005–0.035 due to tag loss dependence that could not be modeled. We also analyzed the data with and without the tattoo using a single tag. By not using.Supplementary materials accompanying this paper appear on-line.</description><subject>Agriculture</subject><subject>Analysis</subject><subject>animals</subject><subject>Biostatistics</subject><subject>Black bear</subject><subject>Business losses</subject><subject>data collection</subject><subject>ear tags</subject><subject>Health Sciences</subject><subject>Markov processes</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Monitoring/Environmental Analysis</subject><subject>Statistics</subject><subject>Statistics for Life Sciences</subject><subject>Ursus americanus</subject><issn>1085-7117</issn><issn>1537-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxRdRsFY_gAdxrx62TpJNsnsstdpCi2DtOaT5s2xtNyXZFv32pq4IvUgYEua9X4Z5SXKLYIAA-GNABFOSAcpjlZChs6SHKOEZZiU5j28oaMYR4pfJVQhrAEQY4F4ymtRamyadS__hDuncabNJrfPpk9mZJirtj5TOXAipbHS62PtDfZCbdBzaeivb2jXXyYWVm2Bufu9-snwev48m2ez1ZToazjKVc95mKwlmZUrKCyIZ1kohzJTOFVK4KKUEYgwlCgpOKWBFbF4yo3FsaG2LAlvSTwbdv5XcGFE31rVeqni02dbKNcbWsT8kJSOY5JRE4OEEiJ7WfLaV3Icgpou3Uy_qvMrHVb2xYufjfv5LIBDHiEUXsYgRi2PEAkUGd0yI3qYyXqzd3jcxg3-huw5ah9b5vymY5TTmwKN-3-lWOiErXwexXGBAFAAKzGhBvgFC9Y-k</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Laake, Jeffrey L</creator><creator>Johnson, Devin S</creator><creator>Diefenbach, Duane R</creator><creator>Ternent, Mark A</creator><general>Springer-Verlag</general><general>Springer Science+Business Media, LLC</general><general>Springer US</general><general>Springer</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20141201</creationdate><title>Hidden Markov Model for Dependent Mark Loss and Survival Estimation</title><author>Laake, Jeffrey L ; Johnson, Devin S ; Diefenbach, Duane R ; Ternent, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-ba0ebe95783a62dcc126cd4c1c289aa03ee53c0875502c3f496ed2c08ddf882f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agriculture</topic><topic>Analysis</topic><topic>animals</topic><topic>Biostatistics</topic><topic>Black bear</topic><topic>Business losses</topic><topic>data collection</topic><topic>ear tags</topic><topic>Health Sciences</topic><topic>Markov processes</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Monitoring/Environmental Analysis</topic><topic>Statistics</topic><topic>Statistics for Life Sciences</topic><topic>Ursus americanus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laake, Jeffrey L</creatorcontrib><creatorcontrib>Johnson, Devin S</creatorcontrib><creatorcontrib>Diefenbach, Duane R</creatorcontrib><creatorcontrib>Ternent, Mark A</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laake, Jeffrey L</au><au>Johnson, Devin S</au><au>Diefenbach, Duane R</au><au>Ternent, Mark A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hidden Markov Model for Dependent Mark Loss and Survival Estimation</atitle><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle><stitle>JABES</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>19</volume><issue>4</issue><spage>522</spage><epage>538</epage><pages>522-538</pages><issn>1085-7117</issn><eissn>1537-2693</eissn><abstract>Mark-recapture estimators assume no loss of marks to provide unbiased estimates of population parameters. We describe a hidden Markov model (HMM) framework that integrates a mark loss model with a Cormack–Jolly–Seber model for survival estimation. Mark loss can be estimated with single-marked animals as long as a sub-sample of animals has a permanent mark. Double-marking provides an estimate of mark loss assuming independence but dependence can be modeled with a permanently marked sub-sample. We use a log-linear approach to include covariates for mark loss and dependence which is more flexible than existing published methods for integrated models. The HMM approach is demonstrated with a dataset of black bears (Ursus americanus) with two ear tags and a subset of which were permanently marked with tattoos. The data were analyzed with and without the tattoo. Dropping the tattoos resulted in estimates of survival that were reduced by 0.005–0.035 due to tag loss dependence that could not be modeled. We also analyzed the data with and without the tattoo using a single tag. By not using.Supplementary materials accompanying this paper appear on-line.</abstract><cop>Boston</cop><pub>Springer-Verlag</pub><doi>10.1007/s13253-014-0190-1</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1085-7117
ispartof Journal of agricultural, biological, and environmental statistics, 2014-12, Vol.19 (4), p.522-538
issn 1085-7117
1537-2693
language eng
recordid cdi_gale_infotracacademiconefile_A396323453
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Springer Nature
subjects Agriculture
Analysis
animals
Biostatistics
Black bear
Business losses
data collection
ear tags
Health Sciences
Markov processes
Mathematics and Statistics
Medicine
Monitoring/Environmental Analysis
Statistics
Statistics for Life Sciences
Ursus americanus
title Hidden Markov Model for Dependent Mark Loss and Survival Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hidden%20Markov%20Model%20for%20Dependent%20Mark%20Loss%20and%20Survival%20Estimation&rft.jtitle=Journal%20of%20agricultural,%20biological,%20and%20environmental%20statistics&rft.au=Laake,%20Jeffrey%20L&rft.date=2014-12-01&rft.volume=19&rft.issue=4&rft.spage=522&rft.epage=538&rft.pages=522-538&rft.issn=1085-7117&rft.eissn=1537-2693&rft_id=info:doi/10.1007/s13253-014-0190-1&rft_dat=%3Cgale_cross%3EA396323453%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-ba0ebe95783a62dcc126cd4c1c289aa03ee53c0875502c3f496ed2c08ddf882f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A396323453&rft_jstor_id=26452897&rfr_iscdi=true