Loading…
Development of a new continuous dissolution apparatus with a hydrophobic membrane for superheavy element chemistry
A new technique for continuous dissolution of nuclear reaction products transported by a gas-jet system was developed for superheavy element (SHE) chemistry. In this technique, a hydrophobic membrane is utilized to separate an aqueous phase from the gas phase. With this technique, the dissolution ef...
Saved in:
Published in: | Journal of radioanalytical and nuclear chemistry 2015-02, Vol.303 (2), p.1317-1320 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new technique for continuous dissolution of nuclear reaction products transported by a gas-jet system was developed for superheavy element (SHE) chemistry. In this technique, a hydrophobic membrane is utilized to separate an aqueous phase from the gas phase. With this technique, the dissolution efficiencies of short-lived radionuclides of
91m,93m
Mo and
176
W were measured. Yields of more than 80 % were observed for short-lived radionuclides at aqueous-phase flow rates of 0.1–0.4 mL/s. The gas flow-rate had no influence on the dissolution efficiency within the studied flow range of 1.0–2.0 L/min. These results show that this technique is applicable for on-line chemical studies of SHEs in the liquid phase. |
---|---|
ISSN: | 0236-5731 1588-2780 |
DOI: | 10.1007/s10967-014-3469-3 |