Loading…
Intensification of Polycrystalline Oxide Ceramic Sintering
Possible ways are considered for increasing oxide powder energy with regard to intensifying sintering (activation). This is achieved in four cases. First, with an increase in temperature, i.e., supply of thermal energy from outside. Second, with an increase in internal energy with mechanical grindin...
Saved in:
Published in: | Refractories and industrial ceramics 2015-09, Vol.56 (3), p.281-285 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Possible ways are considered for increasing oxide powder energy with regard to intensifying sintering (activation). This is achieved in four cases. First, with an increase in temperature, i.e., supply of thermal energy from outside. Second, with an increase in internal energy with mechanical grinding of particles due to an increase in surface energy and defects. Third, with an increase in internal energy during chemical methods for powder preparation under essentially nonequilibrium conditions due to an increase in surface energy, and surface and volume defect energy. Fourth, with an increase in internal energy on introducing additives as a result of lattice deformation energy with extraneous ion introduction, and also lattice defect energy on introducing heterovalent ions. |
---|---|
ISSN: | 1083-4877 1573-9139 |
DOI: | 10.1007/s11148-015-9831-3 |