Loading…
Estimation and Inference in Dynamic Unbalanced Panel-data Models with a Small Number of Individuals
This article describes a new Stata routine, xtlsdvc, that computes bias-corrected least-squares dummy variable (LSDV) estimators and their bootstrap variance–covariance matrix for dynamic (possibly) unbalanced panel-data models with strictly exogenous regressors. A Monte Carlo analysis is carried ou...
Saved in:
Published in: | The Stata journal 2005-12, Vol.5 (4), p.473-500 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article describes a new Stata routine, xtlsdvc, that computes bias-corrected least-squares dummy variable (LSDV) estimators and their bootstrap variance–covariance matrix for dynamic (possibly) unbalanced panel-data models with strictly exogenous regressors. A Monte Carlo analysis is carried out to evaluate the finite-sample performance of the bias-corrected LSDV estimators in comparison to the original LSDV estimator and three popular N-consistent estimators: Arellano–Bond, Anderson–Hsiao and Blundell–Bond. Results strongly support the bias-corrected LSDV estimators according to bias and root mean squared error criteria when the number of individuals is small. |
---|---|
ISSN: | 1536-867X 1536-8734 |
DOI: | 10.1177/1536867X0500500401 |