Loading…

Hierarchical Equations for Open System Dynamics in Fermionic and Bosonic Environments

We present two approaches to the dynamics of an open quantum system coupled linearly to a non-Markovian fermionic or bosonic environment. In the first approach, we obtain a hierarchy of stochastic evolution equations of the diffusion type. For the bosonic case such a hierarchy has been derived and p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical physics 2015-06, Vol.159 (6), p.1408-1423
Main Authors: Suess, D., Strunz, W. T., Eisfeld, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-5dd9518253ae813730641e934eec7872f8700ee83de5f62b8fa3fdf90dc973f93
cites cdi_FETCH-LOGICAL-c463t-5dd9518253ae813730641e934eec7872f8700ee83de5f62b8fa3fdf90dc973f93
container_end_page 1423
container_issue 6
container_start_page 1408
container_title Journal of statistical physics
container_volume 159
creator Suess, D.
Strunz, W. T.
Eisfeld, A.
description We present two approaches to the dynamics of an open quantum system coupled linearly to a non-Markovian fermionic or bosonic environment. In the first approach, we obtain a hierarchy of stochastic evolution equations of the diffusion type. For the bosonic case such a hierarchy has been derived and proven suitable for efficient numerical simulations recently (Suess et al. in Phys. Rev. Lett. 113, 150403, 2014 ). The stochastic fermionic hierarchy derived here contains Grassmannian noise, which makes it difficult to simulate numerically due to its anti-commutative multiplication. Therefore, in our second approach we eliminate the noise by deriving a related hierarchy for density matrices. A similar reformulation of the bosonic hierarchy of pure states to a master equation hierarchy and its relation to the hierarchical equations of motion of Tanimura and Kubo is also presented.
doi_str_mv 10.1007/s10955-015-1236-7
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A435385448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A435385448</galeid><sourcerecordid>A435385448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-5dd9518253ae813730641e934eec7872f8700ee83de5f62b8fa3fdf90dc973f93</originalsourceid><addsrcrecordid>eNp9kM1OAjEQgBujiYg-gLe-wGJ_ttv2iIhiQsJBOTe1O8UStovtYsLbW8SzmcNMJvNNZj6E7imZUELkQ6ZEC1ERKirKeFPJCzSiQrJKN5RfohEhjFW1pOIa3eS8JYRopcUIrRcBkk3uMzi7w_Ovgx1CHzP2fcKrPUT8dswDdPjpGG0XXMYh4mdIXRkKDtvY4sc-_9bz-B1SHzuIQ75FV97uMtz95TFaP8_fZ4tquXp5nU2XlasbPlSibbWgigluQVEuOWlqCprXAE4qybyShAAo3oLwDftQ3nLfek1apyX3mo_R5Lx3Y3dgQvT9kKwr0UI5to_gQ-lPay64EnWtCkDPgEt9zgm82afQ2XQ0lJiTSHMWaYpIcxJpZGHYmcllNm4gmW1_SLH89Q_0A82ddkk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hierarchical Equations for Open System Dynamics in Fermionic and Bosonic Environments</title><source>Springer Nature</source><creator>Suess, D. ; Strunz, W. T. ; Eisfeld, A.</creator><creatorcontrib>Suess, D. ; Strunz, W. T. ; Eisfeld, A.</creatorcontrib><description>We present two approaches to the dynamics of an open quantum system coupled linearly to a non-Markovian fermionic or bosonic environment. In the first approach, we obtain a hierarchy of stochastic evolution equations of the diffusion type. For the bosonic case such a hierarchy has been derived and proven suitable for efficient numerical simulations recently (Suess et al. in Phys. Rev. Lett. 113, 150403, 2014 ). The stochastic fermionic hierarchy derived here contains Grassmannian noise, which makes it difficult to simulate numerically due to its anti-commutative multiplication. Therefore, in our second approach we eliminate the noise by deriving a related hierarchy for density matrices. A similar reformulation of the bosonic hierarchy of pure states to a master equation hierarchy and its relation to the hierarchical equations of motion of Tanimura and Kubo is also presented.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-015-1236-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2015-06, Vol.159 (6), p.1408-1423</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-5dd9518253ae813730641e934eec7872f8700ee83de5f62b8fa3fdf90dc973f93</citedby><cites>FETCH-LOGICAL-c463t-5dd9518253ae813730641e934eec7872f8700ee83de5f62b8fa3fdf90dc973f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Suess, D.</creatorcontrib><creatorcontrib>Strunz, W. T.</creatorcontrib><creatorcontrib>Eisfeld, A.</creatorcontrib><title>Hierarchical Equations for Open System Dynamics in Fermionic and Bosonic Environments</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We present two approaches to the dynamics of an open quantum system coupled linearly to a non-Markovian fermionic or bosonic environment. In the first approach, we obtain a hierarchy of stochastic evolution equations of the diffusion type. For the bosonic case such a hierarchy has been derived and proven suitable for efficient numerical simulations recently (Suess et al. in Phys. Rev. Lett. 113, 150403, 2014 ). The stochastic fermionic hierarchy derived here contains Grassmannian noise, which makes it difficult to simulate numerically due to its anti-commutative multiplication. Therefore, in our second approach we eliminate the noise by deriving a related hierarchy for density matrices. A similar reformulation of the bosonic hierarchy of pure states to a master equation hierarchy and its relation to the hierarchical equations of motion of Tanimura and Kubo is also presented.</description><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAjEQgBujiYg-gLe-wGJ_ttv2iIhiQsJBOTe1O8UStovtYsLbW8SzmcNMJvNNZj6E7imZUELkQ6ZEC1ERKirKeFPJCzSiQrJKN5RfohEhjFW1pOIa3eS8JYRopcUIrRcBkk3uMzi7w_Ovgx1CHzP2fcKrPUT8dswDdPjpGG0XXMYh4mdIXRkKDtvY4sc-_9bz-B1SHzuIQ75FV97uMtz95TFaP8_fZ4tquXp5nU2XlasbPlSibbWgigluQVEuOWlqCprXAE4qybyShAAo3oLwDftQ3nLfek1apyX3mo_R5Lx3Y3dgQvT9kKwr0UI5to_gQ-lPay64EnWtCkDPgEt9zgm82afQ2XQ0lJiTSHMWaYpIcxJpZGHYmcllNm4gmW1_SLH89Q_0A82ddkk</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Suess, D.</creator><creator>Strunz, W. T.</creator><creator>Eisfeld, A.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150601</creationdate><title>Hierarchical Equations for Open System Dynamics in Fermionic and Bosonic Environments</title><author>Suess, D. ; Strunz, W. T. ; Eisfeld, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-5dd9518253ae813730641e934eec7872f8700ee83de5f62b8fa3fdf90dc973f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suess, D.</creatorcontrib><creatorcontrib>Strunz, W. T.</creatorcontrib><creatorcontrib>Eisfeld, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suess, D.</au><au>Strunz, W. T.</au><au>Eisfeld, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Equations for Open System Dynamics in Fermionic and Bosonic Environments</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>159</volume><issue>6</issue><spage>1408</spage><epage>1423</epage><pages>1408-1423</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We present two approaches to the dynamics of an open quantum system coupled linearly to a non-Markovian fermionic or bosonic environment. In the first approach, we obtain a hierarchy of stochastic evolution equations of the diffusion type. For the bosonic case such a hierarchy has been derived and proven suitable for efficient numerical simulations recently (Suess et al. in Phys. Rev. Lett. 113, 150403, 2014 ). The stochastic fermionic hierarchy derived here contains Grassmannian noise, which makes it difficult to simulate numerically due to its anti-commutative multiplication. Therefore, in our second approach we eliminate the noise by deriving a related hierarchy for density matrices. A similar reformulation of the bosonic hierarchy of pure states to a master equation hierarchy and its relation to the hierarchical equations of motion of Tanimura and Kubo is also presented.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-015-1236-7</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2015-06, Vol.159 (6), p.1408-1423
issn 0022-4715
1572-9613
language eng
recordid cdi_gale_infotracacademiconefile_A435385448
source Springer Nature
subjects Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
title Hierarchical Equations for Open System Dynamics in Fermionic and Bosonic Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Equations%20for%20Open%20System%20Dynamics%20in%20Fermionic%20and%20Bosonic%20Environments&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Suess,%20D.&rft.date=2015-06-01&rft.volume=159&rft.issue=6&rft.spage=1408&rft.epage=1423&rft.pages=1408-1423&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-015-1236-7&rft_dat=%3Cgale_cross%3EA435385448%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-5dd9518253ae813730641e934eec7872f8700ee83de5f62b8fa3fdf90dc973f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A435385448&rfr_iscdi=true