Loading…
Turbulent convective heat transfer in an inclined tube filled with sodium
Turbulent free convection of liquid sodium in a straight thermally insulated tube with a length equal to 20 diameters and with end heat exchangers ensuring a fixed temperature drop is investigated experimentally. The experiments are performed for a fixed Rayleigh number Ra = 2.4 × 10 6 and various a...
Saved in:
Published in: | Technical physics 2015-09, Vol.60 (9), p.1305-1309 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Turbulent free convection of liquid sodium in a straight thermally insulated tube with a length equal to 20 diameters and with end heat exchangers ensuring a fixed temperature drop is investigated experimentally. The experiments are performed for a fixed Rayleigh number Ra = 2.4 × 10
6
and various angles of inclination of the tube relative to the vertical. A strong dependence of the power transferred along the tube on the angle of inclination is revealed: the Nusselt number in the angular range under investigation changes by an order of magnitude with a maximum at the angle of 65° with the vertical. The characteristics of large-scale circulation and turbulent temperature pulsations show that convective heat transfer is mainly determined by the velocity of large-scale circulation of sodium. Turbulent pulsations are maximal for small angles of inclination (α = 20°–30°) and reduce the heat flux along the channel, although in the limit of small angles (vertical tube), there is no large-scale circulation, and the convective heat flux, which is an order of magnitude larger than the molecular heat flux, is ensured only by small scale (turbulent) flow. |
---|---|
ISSN: | 1063-7842 1090-6525 |
DOI: | 10.1134/S1063784215090236 |