Loading…

Ab initio study of structural and mechanical property of solid molecular hydrogens

Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H 2 ). The influence of molecular axes of H 2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cub...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2015-06, Vol.88 (6), Article 161
Main Authors: Ye, Yingting, Yang, Li, Yang, Tianle, Nie, Jinlan, Peng, Shuming, Long, Xinggui, Zu, Xiaotao, Du, Jincheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-a6e6e42fdf4c3862f428b9027ff952d88ec3e05070ec07547ef3e5d2d516fa23
cites cdi_FETCH-LOGICAL-c364t-a6e6e42fdf4c3862f428b9027ff952d88ec3e05070ec07547ef3e5d2d516fa23
container_end_page
container_issue 6
container_start_page
container_title The European physical journal. B, Condensed matter physics
container_volume 88
creator Ye, Yingting
Yang, Li
Yang, Tianle
Nie, Jinlan
Peng, Shuming
Long, Xinggui
Zu, Xiaotao
Du, Jincheng
description Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H 2 ). The influence of molecular axes of H 2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H 2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.
doi_str_mv 10.1140/epjb/e2015-60042-5
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A435718506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A435718506</galeid><sourcerecordid>A435718506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-a6e6e42fdf4c3862f428b9027ff952d88ec3e05070ec07547ef3e5d2d516fa23</originalsourceid><addsrcrecordid>eNp9kMtqAjEUhkNpodb2BbqabRejuc-4FOlFEArWfYiZkzEyTiSZgfr2jU4puClZnEu-_yw-hJ4JnhDC8RSO--0UKCYilxhzmosbNCKc8TQyefvX0_IePcS4xxgTSfgIrefbzLWucz6LXV-dMm9TE3rT9UE3mW6r7ABmp1tn0ngM_gihGyjfuPTpGzB9o0O2O1XB19DGR3RndRPh6beO0ebtdbP4yFef78vFfJUbJnmXawkSOLWV5YaVklpOy-0M08LamaBVWYJhgAUuMBhcCF6AZSAqWgkiraZsjCbD2Vo3oFxrfRe0Sa-CgzO-BevSfs6ZKEgpsEyBl6tAYjr47mrdx6iWX-trlg6sCT7GAFYdgzvocFIEq7NxdTauLsbVxbgSKcSGUExwW0NQe9-HNjn4L_UDDk6GCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ab initio study of structural and mechanical property of solid molecular hydrogens</title><source>Springer Nature</source><creator>Ye, Yingting ; Yang, Li ; Yang, Tianle ; Nie, Jinlan ; Peng, Shuming ; Long, Xinggui ; Zu, Xiaotao ; Du, Jincheng</creator><creatorcontrib>Ye, Yingting ; Yang, Li ; Yang, Tianle ; Nie, Jinlan ; Peng, Shuming ; Long, Xinggui ; Zu, Xiaotao ; Du, Jincheng</creatorcontrib><description>Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H 2 ). The influence of molecular axes of H 2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H 2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2015-60042-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Systems ; Condensed Matter Physics ; Density functionals ; Fluid- and Aerodynamics ; Hydrogen ; Mechanical properties ; Pellet fusion ; Physics ; Physics and Astronomy ; Regular Article ; Solid State Physics</subject><ispartof>The European physical journal. B, Condensed matter physics, 2015-06, Vol.88 (6), Article 161</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-a6e6e42fdf4c3862f428b9027ff952d88ec3e05070ec07547ef3e5d2d516fa23</citedby><cites>FETCH-LOGICAL-c364t-a6e6e42fdf4c3862f428b9027ff952d88ec3e05070ec07547ef3e5d2d516fa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ye, Yingting</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Yang, Tianle</creatorcontrib><creatorcontrib>Nie, Jinlan</creatorcontrib><creatorcontrib>Peng, Shuming</creatorcontrib><creatorcontrib>Long, Xinggui</creatorcontrib><creatorcontrib>Zu, Xiaotao</creatorcontrib><creatorcontrib>Du, Jincheng</creatorcontrib><title>Ab initio study of structural and mechanical property of solid molecular hydrogens</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H 2 ). The influence of molecular axes of H 2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H 2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.</description><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Density functionals</subject><subject>Fluid- and Aerodynamics</subject><subject>Hydrogen</subject><subject>Mechanical properties</subject><subject>Pellet fusion</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Solid State Physics</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqAjEUhkNpodb2BbqabRejuc-4FOlFEArWfYiZkzEyTiSZgfr2jU4puClZnEu-_yw-hJ4JnhDC8RSO--0UKCYilxhzmosbNCKc8TQyefvX0_IePcS4xxgTSfgIrefbzLWucz6LXV-dMm9TE3rT9UE3mW6r7ABmp1tn0ngM_gihGyjfuPTpGzB9o0O2O1XB19DGR3RndRPh6beO0ebtdbP4yFef78vFfJUbJnmXawkSOLWV5YaVklpOy-0M08LamaBVWYJhgAUuMBhcCF6AZSAqWgkiraZsjCbD2Vo3oFxrfRe0Sa-CgzO-BevSfs6ZKEgpsEyBl6tAYjr47mrdx6iWX-trlg6sCT7GAFYdgzvocFIEq7NxdTauLsbVxbgSKcSGUExwW0NQe9-HNjn4L_UDDk6GCQ</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Ye, Yingting</creator><creator>Yang, Li</creator><creator>Yang, Tianle</creator><creator>Nie, Jinlan</creator><creator>Peng, Shuming</creator><creator>Long, Xinggui</creator><creator>Zu, Xiaotao</creator><creator>Du, Jincheng</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20150601</creationdate><title>Ab initio study of structural and mechanical property of solid molecular hydrogens</title><author>Ye, Yingting ; Yang, Li ; Yang, Tianle ; Nie, Jinlan ; Peng, Shuming ; Long, Xinggui ; Zu, Xiaotao ; Du, Jincheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-a6e6e42fdf4c3862f428b9027ff952d88ec3e05070ec07547ef3e5d2d516fa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Density functionals</topic><topic>Fluid- and Aerodynamics</topic><topic>Hydrogen</topic><topic>Mechanical properties</topic><topic>Pellet fusion</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Yingting</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Yang, Tianle</creatorcontrib><creatorcontrib>Nie, Jinlan</creatorcontrib><creatorcontrib>Peng, Shuming</creatorcontrib><creatorcontrib>Long, Xinggui</creatorcontrib><creatorcontrib>Zu, Xiaotao</creatorcontrib><creatorcontrib>Du, Jincheng</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Yingting</au><au>Yang, Li</au><au>Yang, Tianle</au><au>Nie, Jinlan</au><au>Peng, Shuming</au><au>Long, Xinggui</au><au>Zu, Xiaotao</au><au>Du, Jincheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio study of structural and mechanical property of solid molecular hydrogens</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>88</volume><issue>6</issue><artnum>161</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H 2 ). The influence of molecular axes of H 2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H 2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/e2015-60042-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2015-06, Vol.88 (6), Article 161
issn 1434-6028
1434-6036
language eng
recordid cdi_gale_infotracacademiconefile_A435718506
source Springer Nature
subjects Complex Systems
Condensed Matter Physics
Density functionals
Fluid- and Aerodynamics
Hydrogen
Mechanical properties
Pellet fusion
Physics
Physics and Astronomy
Regular Article
Solid State Physics
title Ab initio study of structural and mechanical property of solid molecular hydrogens
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20study%20of%20structural%20and%20mechanical%20property%20of%20solid%20molecular%20hydrogens&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Ye,%20Yingting&rft.date=2015-06-01&rft.volume=88&rft.issue=6&rft.artnum=161&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2015-60042-5&rft_dat=%3Cgale_cross%3EA435718506%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-a6e6e42fdf4c3862f428b9027ff952d88ec3e05070ec07547ef3e5d2d516fa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A435718506&rfr_iscdi=true