Loading…

On the Transfer of Energy Towards Infinity in the Theory of Weak Turbulence for the Nonlinear Schrödinger Equation

We study the mathematical properties of a kinetic equation, derived in Escobedo and Velázquez ( arXiv:1305.5746v1 [math-ph]), which describes the long time behaviour of solutions to the weak turbulence equation associated to the cubic nonlinear Schrödinger equation. In particular, we give a precise...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical physics 2015-05, Vol.159 (3), p.668-712
Main Authors: Kierkels, A. H. M., Velázquez, J. J. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-36fc5bb9893c4a3681ceb33421f0eb40de989b37808359e62b62dcacda5a58643
cites cdi_FETCH-LOGICAL-c397t-36fc5bb9893c4a3681ceb33421f0eb40de989b37808359e62b62dcacda5a58643
container_end_page 712
container_issue 3
container_start_page 668
container_title Journal of statistical physics
container_volume 159
creator Kierkels, A. H. M.
Velázquez, J. J. L.
description We study the mathematical properties of a kinetic equation, derived in Escobedo and Velázquez ( arXiv:1305.5746v1 [math-ph]), which describes the long time behaviour of solutions to the weak turbulence equation associated to the cubic nonlinear Schrödinger equation. In particular, we give a precise definition of weak solutions and prove global existence of solutions for all initial data with finite mass. We also prove that any nontrivial initial datum yields the instantaneous onset of a condensate, by which we mean that for any nontrivial solution the mass of the origin is strictly positive for any positive time. Furthermore we show that the only stationary solutions with finite total measure are Dirac masses at the origin. We finally construct solutions with finite energy, where the energy is transferred to infinity in a self-similar manner.
doi_str_mv 10.1007/s10955-015-1194-0
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A437878116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A437878116</galeid><sourcerecordid>A437878116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-36fc5bb9893c4a3681ceb33421f0eb40de989b37808359e62b62dcacda5a58643</originalsourceid><addsrcrecordid>eNp9kM1OAyEURonRxFp9AHe8ABWGYX6WTVO1SWMXjnFJGObSUltQmMb0xXwBX0zquHZFcjnny70fQreMThil5V1ktBaCUCYIY3VO6BkaMVFmpC4YP0cjSrOM5CUTl-gqxi2ltK5qMUJx5XC_AdwE5aKBgL3BcwdhfcSN_1Shi3jhjHW2P2L7h27Ah-MJfAX1hptDaA87cBqw8eGXePJuZx2ogJ_1Jnx_ddatU_T846B66901ujBqF-Hm7x2jl_t5M3sky9XDYjZdEs3rsie8MFq0bdqT61zxomIaWs7zjBkKbU47SF8tLytacVFDkbVF1mmlOyWUqIqcj9FkyF2rHUjrjO-DSoDqYG-1d2Bsmk_zFFFWjBVJYIOgg48xgJHvwe5VOEpG5almOdQsU83yVLOkyckGJyb2dKbc-kNw6a5_pB_Gn4F7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Transfer of Energy Towards Infinity in the Theory of Weak Turbulence for the Nonlinear Schrödinger Equation</title><source>Springer Link</source><creator>Kierkels, A. H. M. ; Velázquez, J. J. L.</creator><creatorcontrib>Kierkels, A. H. M. ; Velázquez, J. J. L.</creatorcontrib><description>We study the mathematical properties of a kinetic equation, derived in Escobedo and Velázquez ( arXiv:1305.5746v1 [math-ph]), which describes the long time behaviour of solutions to the weak turbulence equation associated to the cubic nonlinear Schrödinger equation. In particular, we give a precise definition of weak solutions and prove global existence of solutions for all initial data with finite mass. We also prove that any nontrivial initial datum yields the instantaneous onset of a condensate, by which we mean that for any nontrivial solution the mass of the origin is strictly positive for any positive time. Furthermore we show that the only stationary solutions with finite total measure are Dirac masses at the origin. We finally construct solutions with finite energy, where the energy is transferred to infinity in a self-similar manner.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-015-1194-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2015-05, Vol.159 (3), p.668-712</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-36fc5bb9893c4a3681ceb33421f0eb40de989b37808359e62b62dcacda5a58643</citedby><cites>FETCH-LOGICAL-c397t-36fc5bb9893c4a3681ceb33421f0eb40de989b37808359e62b62dcacda5a58643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kierkels, A. H. M.</creatorcontrib><creatorcontrib>Velázquez, J. J. L.</creatorcontrib><title>On the Transfer of Energy Towards Infinity in the Theory of Weak Turbulence for the Nonlinear Schrödinger Equation</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We study the mathematical properties of a kinetic equation, derived in Escobedo and Velázquez ( arXiv:1305.5746v1 [math-ph]), which describes the long time behaviour of solutions to the weak turbulence equation associated to the cubic nonlinear Schrödinger equation. In particular, we give a precise definition of weak solutions and prove global existence of solutions for all initial data with finite mass. We also prove that any nontrivial initial datum yields the instantaneous onset of a condensate, by which we mean that for any nontrivial solution the mass of the origin is strictly positive for any positive time. Furthermore we show that the only stationary solutions with finite total measure are Dirac masses at the origin. We finally construct solutions with finite energy, where the energy is transferred to infinity in a self-similar manner.</description><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEURonRxFp9AHe8ABWGYX6WTVO1SWMXjnFJGObSUltQmMb0xXwBX0zquHZFcjnny70fQreMThil5V1ktBaCUCYIY3VO6BkaMVFmpC4YP0cjSrOM5CUTl-gqxi2ltK5qMUJx5XC_AdwE5aKBgL3BcwdhfcSN_1Shi3jhjHW2P2L7h27Ah-MJfAX1hptDaA87cBqw8eGXePJuZx2ogJ_1Jnx_ddatU_T846B66901ujBqF-Hm7x2jl_t5M3sky9XDYjZdEs3rsie8MFq0bdqT61zxomIaWs7zjBkKbU47SF8tLytacVFDkbVF1mmlOyWUqIqcj9FkyF2rHUjrjO-DSoDqYG-1d2Bsmk_zFFFWjBVJYIOgg48xgJHvwe5VOEpG5almOdQsU83yVLOkyckGJyb2dKbc-kNw6a5_pB_Gn4F7</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Kierkels, A. H. M.</creator><creator>Velázquez, J. J. L.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150501</creationdate><title>On the Transfer of Energy Towards Infinity in the Theory of Weak Turbulence for the Nonlinear Schrödinger Equation</title><author>Kierkels, A. H. M. ; Velázquez, J. J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-36fc5bb9893c4a3681ceb33421f0eb40de989b37808359e62b62dcacda5a58643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kierkels, A. H. M.</creatorcontrib><creatorcontrib>Velázquez, J. J. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kierkels, A. H. M.</au><au>Velázquez, J. J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Transfer of Energy Towards Infinity in the Theory of Weak Turbulence for the Nonlinear Schrödinger Equation</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>159</volume><issue>3</issue><spage>668</spage><epage>712</epage><pages>668-712</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We study the mathematical properties of a kinetic equation, derived in Escobedo and Velázquez ( arXiv:1305.5746v1 [math-ph]), which describes the long time behaviour of solutions to the weak turbulence equation associated to the cubic nonlinear Schrödinger equation. In particular, we give a precise definition of weak solutions and prove global existence of solutions for all initial data with finite mass. We also prove that any nontrivial initial datum yields the instantaneous onset of a condensate, by which we mean that for any nontrivial solution the mass of the origin is strictly positive for any positive time. Furthermore we show that the only stationary solutions with finite total measure are Dirac masses at the origin. We finally construct solutions with finite energy, where the energy is transferred to infinity in a self-similar manner.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10955-015-1194-0</doi><tpages>45</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2015-05, Vol.159 (3), p.668-712
issn 0022-4715
1572-9613
language eng
recordid cdi_gale_infotracacademiconefile_A437878116
source Springer Link
subjects Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
title On the Transfer of Energy Towards Infinity in the Theory of Weak Turbulence for the Nonlinear Schrödinger Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Transfer%20of%20Energy%20Towards%20Infinity%20in%20the%20Theory%20of%20Weak%20Turbulence%20for%20the%20Nonlinear%20Schr%C3%B6dinger%20Equation&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Kierkels,%20A.%20H.%20M.&rft.date=2015-05-01&rft.volume=159&rft.issue=3&rft.spage=668&rft.epage=712&rft.pages=668-712&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-015-1194-0&rft_dat=%3Cgale_cross%3EA437878116%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-36fc5bb9893c4a3681ceb33421f0eb40de989b37808359e62b62dcacda5a58643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A437878116&rfr_iscdi=true