Loading…
Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al–Mg–Si nanostructured under severe plastic deformation
The microstructural features, strength, and electrical conductivity of the electrotechnical aluminum alloy 6201 of the Al–Mg–Si system was investigated. The alloy was nanostructured using severe plastic deformation by high pressure torsion at different temperatures and in different deformation regim...
Saved in:
Published in: | Physics of the solid state 2015-10, Vol.57 (10), p.2051-2058 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-86ba39dfe8dcbe9dc56c63e4687fcabea5c1badce862af8447c37a3e4c9a300a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-86ba39dfe8dcbe9dc56c63e4687fcabea5c1badce862af8447c37a3e4c9a300a3 |
container_end_page | 2058 |
container_issue | 10 |
container_start_page | 2051 |
container_title | Physics of the solid state |
container_volume | 57 |
creator | Mavlyutov, A. M. Kasatkin, I. A. Murashkin, M. Yu Valiev, R. Z. Orlova, T. S. |
description | The microstructural features, strength, and electrical conductivity of the electrotechnical aluminum alloy 6201 of the Al–Mg–Si system was investigated. The alloy was nanostructured using severe plastic deformation by high pressure torsion at different temperatures and in different deformation regimes. As a result, the samples had an ultrafine-grain structure with nanoinclusions of secondary phases, which provided an excellent combination of high strength (conventional yield strength σ
0.2
= 325–410 MPa) and electrical conductivity (55–52% IACS). The contributions from different mechanisms to the strengthening were analyzed. It was experimentally found that the introduction of an additional dislocation density (an increase from 2 × 10
13
to 5 × 10
13
m
–2
) with the same basic parameters of the ultrafine-grain structure (grain size, size and distribution of particles of secondary strengthening phases) leads to an increase in the strength of the alloy by ~15%, while the electrical conductivity of the material changes insignificantly. The contribution from grain boundaries to the electrical resistivity of the alloy with an ultrafine-grain structure upon the change in their state, most likely, due to a change in the degree of nonequilibrium was estimated. |
doi_str_mv | 10.1134/S1063783415100194 |
format | article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A444738215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A444738215</galeid><sourcerecordid>A444738215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-86ba39dfe8dcbe9dc56c63e4687fcabea5c1badce862af8447c37a3e4c9a300a3</originalsourceid><addsrcrecordid>eNp9kcFqGzEQhpeSQhMnD5CbrjlsKlm78u7RhCQ1uBTq9LyMZ0e2zK60SNoQ3_IOgT5gnyRy3FJCoQik4df_zcA_WXYp-LUQsvi8ElzJWSULUQrORV18yE4Fr3muCsVPDrWS-eH_U3YWwi5ZhCjr0-znwupuJIvEnGZxS6w36F2IfsQ4-qTaN3XY7oNB1xNuwRqEjg3eDeSjofCHhG7sjR37VHRuz-bdr-eXr5t0rQyzYP82bdloW_Is0COlEUMHIRpkLWnne4jG2fPso4Yu0MXvd5L9uLt9uPmSL7_dL27myxylEjGv1Bpk3WqqWlxT3WKpUEkqVDXTCGuCEsUaWqRKTUFXRTFDOYNkwBok5yAn2fWx7wY6aozVLnrAdFpKOThL2iR9XiRSVlNRJuDqHZA8kZ7iBsYQmsXq-3uvOHoPgQZPuhm86cHvG8Gbw9aaf7aWmOmRCclrN-SbnRu9TRn8B3oFsr2f7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al–Mg–Si nanostructured under severe plastic deformation</title><source>Springer Nature</source><creator>Mavlyutov, A. M. ; Kasatkin, I. A. ; Murashkin, M. Yu ; Valiev, R. Z. ; Orlova, T. S.</creator><creatorcontrib>Mavlyutov, A. M. ; Kasatkin, I. A. ; Murashkin, M. Yu ; Valiev, R. Z. ; Orlova, T. S.</creatorcontrib><description>The microstructural features, strength, and electrical conductivity of the electrotechnical aluminum alloy 6201 of the Al–Mg–Si system was investigated. The alloy was nanostructured using severe plastic deformation by high pressure torsion at different temperatures and in different deformation regimes. As a result, the samples had an ultrafine-grain structure with nanoinclusions of secondary phases, which provided an excellent combination of high strength (conventional yield strength σ
0.2
= 325–410 MPa) and electrical conductivity (55–52% IACS). The contributions from different mechanisms to the strengthening were analyzed. It was experimentally found that the introduction of an additional dislocation density (an increase from 2 × 10
13
to 5 × 10
13
m
–2
) with the same basic parameters of the ultrafine-grain structure (grain size, size and distribution of particles of secondary strengthening phases) leads to an increase in the strength of the alloy by ~15%, while the electrical conductivity of the material changes insignificantly. The contribution from grain boundaries to the electrical resistivity of the alloy with an ultrafine-grain structure upon the change in their state, most likely, due to a change in the degree of nonequilibrium was estimated.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S1063783415100194</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Alloys ; Aluminum ; Analysis ; Electric properties ; Electrical conductivity ; Grain boundaries ; Mechanical Properties ; Physics ; Physics and Astronomy ; Physics of Strength ; Plasticity ; Solid State Physics ; Specialty metals industry</subject><ispartof>Physics of the solid state, 2015-10, Vol.57 (10), p.2051-2058</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-86ba39dfe8dcbe9dc56c63e4687fcabea5c1badce862af8447c37a3e4c9a300a3</citedby><cites>FETCH-LOGICAL-c361t-86ba39dfe8dcbe9dc56c63e4687fcabea5c1badce862af8447c37a3e4c9a300a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mavlyutov, A. M.</creatorcontrib><creatorcontrib>Kasatkin, I. A.</creatorcontrib><creatorcontrib>Murashkin, M. Yu</creatorcontrib><creatorcontrib>Valiev, R. Z.</creatorcontrib><creatorcontrib>Orlova, T. S.</creatorcontrib><title>Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al–Mg–Si nanostructured under severe plastic deformation</title><title>Physics of the solid state</title><addtitle>Phys. Solid State</addtitle><description>The microstructural features, strength, and electrical conductivity of the electrotechnical aluminum alloy 6201 of the Al–Mg–Si system was investigated. The alloy was nanostructured using severe plastic deformation by high pressure torsion at different temperatures and in different deformation regimes. As a result, the samples had an ultrafine-grain structure with nanoinclusions of secondary phases, which provided an excellent combination of high strength (conventional yield strength σ
0.2
= 325–410 MPa) and electrical conductivity (55–52% IACS). The contributions from different mechanisms to the strengthening were analyzed. It was experimentally found that the introduction of an additional dislocation density (an increase from 2 × 10
13
to 5 × 10
13
m
–2
) with the same basic parameters of the ultrafine-grain structure (grain size, size and distribution of particles of secondary strengthening phases) leads to an increase in the strength of the alloy by ~15%, while the electrical conductivity of the material changes insignificantly. The contribution from grain boundaries to the electrical resistivity of the alloy with an ultrafine-grain structure upon the change in their state, most likely, due to a change in the degree of nonequilibrium was estimated.</description><subject>Alloys</subject><subject>Aluminum</subject><subject>Analysis</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Grain boundaries</subject><subject>Mechanical Properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics of Strength</subject><subject>Plasticity</subject><subject>Solid State Physics</subject><subject>Specialty metals industry</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kcFqGzEQhpeSQhMnD5CbrjlsKlm78u7RhCQ1uBTq9LyMZ0e2zK60SNoQ3_IOgT5gnyRy3FJCoQik4df_zcA_WXYp-LUQsvi8ElzJWSULUQrORV18yE4Fr3muCsVPDrWS-eH_U3YWwi5ZhCjr0-znwupuJIvEnGZxS6w36F2IfsQ4-qTaN3XY7oNB1xNuwRqEjg3eDeSjofCHhG7sjR37VHRuz-bdr-eXr5t0rQyzYP82bdloW_Is0COlEUMHIRpkLWnne4jG2fPso4Yu0MXvd5L9uLt9uPmSL7_dL27myxylEjGv1Bpk3WqqWlxT3WKpUEkqVDXTCGuCEsUaWqRKTUFXRTFDOYNkwBok5yAn2fWx7wY6aozVLnrAdFpKOThL2iR9XiRSVlNRJuDqHZA8kZ7iBsYQmsXq-3uvOHoPgQZPuhm86cHvG8Gbw9aaf7aWmOmRCclrN-SbnRu9TRn8B3oFsr2f7g</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Mavlyutov, A. M.</creator><creator>Kasatkin, I. A.</creator><creator>Murashkin, M. Yu</creator><creator>Valiev, R. Z.</creator><creator>Orlova, T. S.</creator><general>Pleiades Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20151001</creationdate><title>Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al–Mg–Si nanostructured under severe plastic deformation</title><author>Mavlyutov, A. M. ; Kasatkin, I. A. ; Murashkin, M. Yu ; Valiev, R. Z. ; Orlova, T. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-86ba39dfe8dcbe9dc56c63e4687fcabea5c1badce862af8447c37a3e4c9a300a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Aluminum</topic><topic>Analysis</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Grain boundaries</topic><topic>Mechanical Properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics of Strength</topic><topic>Plasticity</topic><topic>Solid State Physics</topic><topic>Specialty metals industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mavlyutov, A. M.</creatorcontrib><creatorcontrib>Kasatkin, I. A.</creatorcontrib><creatorcontrib>Murashkin, M. Yu</creatorcontrib><creatorcontrib>Valiev, R. Z.</creatorcontrib><creatorcontrib>Orlova, T. S.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mavlyutov, A. M.</au><au>Kasatkin, I. A.</au><au>Murashkin, M. Yu</au><au>Valiev, R. Z.</au><au>Orlova, T. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al–Mg–Si nanostructured under severe plastic deformation</atitle><jtitle>Physics of the solid state</jtitle><stitle>Phys. Solid State</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>57</volume><issue>10</issue><spage>2051</spage><epage>2058</epage><pages>2051-2058</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>The microstructural features, strength, and electrical conductivity of the electrotechnical aluminum alloy 6201 of the Al–Mg–Si system was investigated. The alloy was nanostructured using severe plastic deformation by high pressure torsion at different temperatures and in different deformation regimes. As a result, the samples had an ultrafine-grain structure with nanoinclusions of secondary phases, which provided an excellent combination of high strength (conventional yield strength σ
0.2
= 325–410 MPa) and electrical conductivity (55–52% IACS). The contributions from different mechanisms to the strengthening were analyzed. It was experimentally found that the introduction of an additional dislocation density (an increase from 2 × 10
13
to 5 × 10
13
m
–2
) with the same basic parameters of the ultrafine-grain structure (grain size, size and distribution of particles of secondary strengthening phases) leads to an increase in the strength of the alloy by ~15%, while the electrical conductivity of the material changes insignificantly. The contribution from grain boundaries to the electrical resistivity of the alloy with an ultrafine-grain structure upon the change in their state, most likely, due to a change in the degree of nonequilibrium was estimated.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063783415100194</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7834 |
ispartof | Physics of the solid state, 2015-10, Vol.57 (10), p.2051-2058 |
issn | 1063-7834 1090-6460 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A444738215 |
source | Springer Nature |
subjects | Alloys Aluminum Analysis Electric properties Electrical conductivity Grain boundaries Mechanical Properties Physics Physics and Astronomy Physics of Strength Plasticity Solid State Physics Specialty metals industry |
title | Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al–Mg–Si nanostructured under severe plastic deformation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20microstructure%20on%20the%20physicomechanical%20properties%20of%20the%20aluminum%20alloy%20Al%E2%80%93Mg%E2%80%93Si%20nanostructured%20under%20severe%20plastic%20deformation&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Mavlyutov,%20A.%20M.&rft.date=2015-10-01&rft.volume=57&rft.issue=10&rft.spage=2051&rft.epage=2058&rft.pages=2051-2058&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S1063783415100194&rft_dat=%3Cgale_cross%3EA444738215%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-86ba39dfe8dcbe9dc56c63e4687fcabea5c1badce862af8447c37a3e4c9a300a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A444738215&rfr_iscdi=true |