Loading…

Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al–Mg–Si nanostructured under severe plastic deformation

The microstructural features, strength, and electrical conductivity of the electrotechnical aluminum alloy 6201 of the Al–Mg–Si system was investigated. The alloy was nanostructured using severe plastic deformation by high pressure torsion at different temperatures and in different deformation regim...

Full description

Saved in:
Bibliographic Details
Published in:Physics of the solid state 2015-10, Vol.57 (10), p.2051-2058
Main Authors: Mavlyutov, A. M., Kasatkin, I. A., Murashkin, M. Yu, Valiev, R. Z., Orlova, T. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-86ba39dfe8dcbe9dc56c63e4687fcabea5c1badce862af8447c37a3e4c9a300a3
cites cdi_FETCH-LOGICAL-c361t-86ba39dfe8dcbe9dc56c63e4687fcabea5c1badce862af8447c37a3e4c9a300a3
container_end_page 2058
container_issue 10
container_start_page 2051
container_title Physics of the solid state
container_volume 57
creator Mavlyutov, A. M.
Kasatkin, I. A.
Murashkin, M. Yu
Valiev, R. Z.
Orlova, T. S.
description The microstructural features, strength, and electrical conductivity of the electrotechnical aluminum alloy 6201 of the Al–Mg–Si system was investigated. The alloy was nanostructured using severe plastic deformation by high pressure torsion at different temperatures and in different deformation regimes. As a result, the samples had an ultrafine-grain structure with nanoinclusions of secondary phases, which provided an excellent combination of high strength (conventional yield strength σ 0.2 = 325–410 MPa) and electrical conductivity (55–52% IACS). The contributions from different mechanisms to the strengthening were analyzed. It was experimentally found that the introduction of an additional dislocation density (an increase from 2 × 10 13 to 5 × 10 13 m –2 ) with the same basic parameters of the ultrafine-grain structure (grain size, size and distribution of particles of secondary strengthening phases) leads to an increase in the strength of the alloy by ~15%, while the electrical conductivity of the material changes insignificantly. The contribution from grain boundaries to the electrical resistivity of the alloy with an ultrafine-grain structure upon the change in their state, most likely, due to a change in the degree of nonequilibrium was estimated.
doi_str_mv 10.1134/S1063783415100194
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A444738215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A444738215</galeid><sourcerecordid>A444738215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-86ba39dfe8dcbe9dc56c63e4687fcabea5c1badce862af8447c37a3e4c9a300a3</originalsourceid><addsrcrecordid>eNp9kcFqGzEQhpeSQhMnD5CbrjlsKlm78u7RhCQ1uBTq9LyMZ0e2zK60SNoQ3_IOgT5gnyRy3FJCoQik4df_zcA_WXYp-LUQsvi8ElzJWSULUQrORV18yE4Fr3muCsVPDrWS-eH_U3YWwi5ZhCjr0-znwupuJIvEnGZxS6w36F2IfsQ4-qTaN3XY7oNB1xNuwRqEjg3eDeSjofCHhG7sjR37VHRuz-bdr-eXr5t0rQyzYP82bdloW_Is0COlEUMHIRpkLWnne4jG2fPso4Yu0MXvd5L9uLt9uPmSL7_dL27myxylEjGv1Bpk3WqqWlxT3WKpUEkqVDXTCGuCEsUaWqRKTUFXRTFDOYNkwBok5yAn2fWx7wY6aozVLnrAdFpKOThL2iR9XiRSVlNRJuDqHZA8kZ7iBsYQmsXq-3uvOHoPgQZPuhm86cHvG8Gbw9aaf7aWmOmRCclrN-SbnRu9TRn8B3oFsr2f7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al–Mg–Si nanostructured under severe plastic deformation</title><source>Springer Nature</source><creator>Mavlyutov, A. M. ; Kasatkin, I. A. ; Murashkin, M. Yu ; Valiev, R. Z. ; Orlova, T. S.</creator><creatorcontrib>Mavlyutov, A. M. ; Kasatkin, I. A. ; Murashkin, M. Yu ; Valiev, R. Z. ; Orlova, T. S.</creatorcontrib><description>The microstructural features, strength, and electrical conductivity of the electrotechnical aluminum alloy 6201 of the Al–Mg–Si system was investigated. The alloy was nanostructured using severe plastic deformation by high pressure torsion at different temperatures and in different deformation regimes. As a result, the samples had an ultrafine-grain structure with nanoinclusions of secondary phases, which provided an excellent combination of high strength (conventional yield strength σ 0.2 = 325–410 MPa) and electrical conductivity (55–52% IACS). The contributions from different mechanisms to the strengthening were analyzed. It was experimentally found that the introduction of an additional dislocation density (an increase from 2 × 10 13 to 5 × 10 13 m –2 ) with the same basic parameters of the ultrafine-grain structure (grain size, size and distribution of particles of secondary strengthening phases) leads to an increase in the strength of the alloy by ~15%, while the electrical conductivity of the material changes insignificantly. The contribution from grain boundaries to the electrical resistivity of the alloy with an ultrafine-grain structure upon the change in their state, most likely, due to a change in the degree of nonequilibrium was estimated.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S1063783415100194</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Alloys ; Aluminum ; Analysis ; Electric properties ; Electrical conductivity ; Grain boundaries ; Mechanical Properties ; Physics ; Physics and Astronomy ; Physics of Strength ; Plasticity ; Solid State Physics ; Specialty metals industry</subject><ispartof>Physics of the solid state, 2015-10, Vol.57 (10), p.2051-2058</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-86ba39dfe8dcbe9dc56c63e4687fcabea5c1badce862af8447c37a3e4c9a300a3</citedby><cites>FETCH-LOGICAL-c361t-86ba39dfe8dcbe9dc56c63e4687fcabea5c1badce862af8447c37a3e4c9a300a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mavlyutov, A. M.</creatorcontrib><creatorcontrib>Kasatkin, I. A.</creatorcontrib><creatorcontrib>Murashkin, M. Yu</creatorcontrib><creatorcontrib>Valiev, R. Z.</creatorcontrib><creatorcontrib>Orlova, T. S.</creatorcontrib><title>Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al–Mg–Si nanostructured under severe plastic deformation</title><title>Physics of the solid state</title><addtitle>Phys. Solid State</addtitle><description>The microstructural features, strength, and electrical conductivity of the electrotechnical aluminum alloy 6201 of the Al–Mg–Si system was investigated. The alloy was nanostructured using severe plastic deformation by high pressure torsion at different temperatures and in different deformation regimes. As a result, the samples had an ultrafine-grain structure with nanoinclusions of secondary phases, which provided an excellent combination of high strength (conventional yield strength σ 0.2 = 325–410 MPa) and electrical conductivity (55–52% IACS). The contributions from different mechanisms to the strengthening were analyzed. It was experimentally found that the introduction of an additional dislocation density (an increase from 2 × 10 13 to 5 × 10 13 m –2 ) with the same basic parameters of the ultrafine-grain structure (grain size, size and distribution of particles of secondary strengthening phases) leads to an increase in the strength of the alloy by ~15%, while the electrical conductivity of the material changes insignificantly. The contribution from grain boundaries to the electrical resistivity of the alloy with an ultrafine-grain structure upon the change in their state, most likely, due to a change in the degree of nonequilibrium was estimated.</description><subject>Alloys</subject><subject>Aluminum</subject><subject>Analysis</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Grain boundaries</subject><subject>Mechanical Properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics of Strength</subject><subject>Plasticity</subject><subject>Solid State Physics</subject><subject>Specialty metals industry</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kcFqGzEQhpeSQhMnD5CbrjlsKlm78u7RhCQ1uBTq9LyMZ0e2zK60SNoQ3_IOgT5gnyRy3FJCoQik4df_zcA_WXYp-LUQsvi8ElzJWSULUQrORV18yE4Fr3muCsVPDrWS-eH_U3YWwi5ZhCjr0-znwupuJIvEnGZxS6w36F2IfsQ4-qTaN3XY7oNB1xNuwRqEjg3eDeSjofCHhG7sjR37VHRuz-bdr-eXr5t0rQyzYP82bdloW_Is0COlEUMHIRpkLWnne4jG2fPso4Yu0MXvd5L9uLt9uPmSL7_dL27myxylEjGv1Bpk3WqqWlxT3WKpUEkqVDXTCGuCEsUaWqRKTUFXRTFDOYNkwBok5yAn2fWx7wY6aozVLnrAdFpKOThL2iR9XiRSVlNRJuDqHZA8kZ7iBsYQmsXq-3uvOHoPgQZPuhm86cHvG8Gbw9aaf7aWmOmRCclrN-SbnRu9TRn8B3oFsr2f7g</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Mavlyutov, A. M.</creator><creator>Kasatkin, I. A.</creator><creator>Murashkin, M. Yu</creator><creator>Valiev, R. Z.</creator><creator>Orlova, T. S.</creator><general>Pleiades Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20151001</creationdate><title>Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al–Mg–Si nanostructured under severe plastic deformation</title><author>Mavlyutov, A. M. ; Kasatkin, I. A. ; Murashkin, M. Yu ; Valiev, R. Z. ; Orlova, T. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-86ba39dfe8dcbe9dc56c63e4687fcabea5c1badce862af8447c37a3e4c9a300a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Aluminum</topic><topic>Analysis</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Grain boundaries</topic><topic>Mechanical Properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics of Strength</topic><topic>Plasticity</topic><topic>Solid State Physics</topic><topic>Specialty metals industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mavlyutov, A. M.</creatorcontrib><creatorcontrib>Kasatkin, I. A.</creatorcontrib><creatorcontrib>Murashkin, M. Yu</creatorcontrib><creatorcontrib>Valiev, R. Z.</creatorcontrib><creatorcontrib>Orlova, T. S.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mavlyutov, A. M.</au><au>Kasatkin, I. A.</au><au>Murashkin, M. Yu</au><au>Valiev, R. Z.</au><au>Orlova, T. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al–Mg–Si nanostructured under severe plastic deformation</atitle><jtitle>Physics of the solid state</jtitle><stitle>Phys. Solid State</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>57</volume><issue>10</issue><spage>2051</spage><epage>2058</epage><pages>2051-2058</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>The microstructural features, strength, and electrical conductivity of the electrotechnical aluminum alloy 6201 of the Al–Mg–Si system was investigated. The alloy was nanostructured using severe plastic deformation by high pressure torsion at different temperatures and in different deformation regimes. As a result, the samples had an ultrafine-grain structure with nanoinclusions of secondary phases, which provided an excellent combination of high strength (conventional yield strength σ 0.2 = 325–410 MPa) and electrical conductivity (55–52% IACS). The contributions from different mechanisms to the strengthening were analyzed. It was experimentally found that the introduction of an additional dislocation density (an increase from 2 × 10 13 to 5 × 10 13 m –2 ) with the same basic parameters of the ultrafine-grain structure (grain size, size and distribution of particles of secondary strengthening phases) leads to an increase in the strength of the alloy by ~15%, while the electrical conductivity of the material changes insignificantly. The contribution from grain boundaries to the electrical resistivity of the alloy with an ultrafine-grain structure upon the change in their state, most likely, due to a change in the degree of nonequilibrium was estimated.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063783415100194</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7834
ispartof Physics of the solid state, 2015-10, Vol.57 (10), p.2051-2058
issn 1063-7834
1090-6460
language eng
recordid cdi_gale_infotracacademiconefile_A444738215
source Springer Nature
subjects Alloys
Aluminum
Analysis
Electric properties
Electrical conductivity
Grain boundaries
Mechanical Properties
Physics
Physics and Astronomy
Physics of Strength
Plasticity
Solid State Physics
Specialty metals industry
title Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al–Mg–Si nanostructured under severe plastic deformation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20microstructure%20on%20the%20physicomechanical%20properties%20of%20the%20aluminum%20alloy%20Al%E2%80%93Mg%E2%80%93Si%20nanostructured%20under%20severe%20plastic%20deformation&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Mavlyutov,%20A.%20M.&rft.date=2015-10-01&rft.volume=57&rft.issue=10&rft.spage=2051&rft.epage=2058&rft.pages=2051-2058&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S1063783415100194&rft_dat=%3Cgale_cross%3EA444738215%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-86ba39dfe8dcbe9dc56c63e4687fcabea5c1badce862af8447c37a3e4c9a300a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A444738215&rfr_iscdi=true