Loading…
An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems
Model Order Reduction (MOR) methods are employed in many fields of Engineering in order to reduce the processing time of complex computational simulations. A usual approach to achieve this is the application of Galerkin projection to generate representative subspaces (reduced spaces). However, when...
Saved in:
Published in: | Computational mechanics 2016-04, Vol.57 (4), p.537-554 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c431t-671f376d86c4cf80ab2a78847dad72ff29cd3b5d3a92916beb1f24be8ffdd4ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c431t-671f376d86c4cf80ab2a78847dad72ff29cd3b5d3a92916beb1f24be8ffdd4ef3 |
container_end_page | 554 |
container_issue | 4 |
container_start_page | 537 |
container_title | Computational mechanics |
container_volume | 57 |
creator | Nigro, P. S. B. Anndif, M. Teixeira, Y. Pimenta, P. M. Wriggers, P. |
description | Model Order Reduction (MOR) methods are employed in many fields of Engineering in order to reduce the processing time of complex computational simulations. A usual approach to achieve this is the application of Galerkin projection to generate representative subspaces (reduced spaces). However, when strong nonlinearities in a dynamical system are present and this technique is employed several times along the simulation, it can be very inefficient. This work proposes a new adaptive strategy, which ensures low computational cost and small error to deal with this problem. This work also presents a new method to select snapshots named Proper Snapshot Selection (PSS). The objective of the PSS is to obtain a good balance between accuracy and computational cost by improving the adaptive strategy through a better snapshot selection in real time (online analysis). With this method, it is possible a substantial reduction of the subspace, keeping the quality of the model without the use of the Proper Orthogonal Decomposition (POD). |
doi_str_mv | 10.1007/s00466-015-1238-y |
format | article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A446121250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A446121250</galeid><sourcerecordid>A446121250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-671f376d86c4cf80ab2a78847dad72ff29cd3b5d3a92916beb1f24be8ffdd4ef3</originalsourceid><addsrcrecordid>eNp9kE1rwyAYgGVssK7bD9jN6w7Z1JhojqXso1AY7OMsJr52KYkGTcfy72fJLr0MD8Lr88jLg9AtJfeUEPEQCeFlmRFaZJTlMpvO0ILynGWkYvwcLQgVMhOlKC7RVYx7kkCZFwukVg5ro4ex_QbcewMd9sFAwAHMoRlb73A94SH4Ic2i00P88iOO0MH8aH3AzruudaADNpPTfdvo7mjUHfTxGl1Y3UW4-buX6PPp8WP9km1fnzfr1TZreE7HrBTU5qI0smx4YyXRNdNCSi6MNoJZy6rG5HVhcl2xipY11NQyXoO01hgONl-i-_nfne5Atc76MegmHQNpIe_Atmm-4rykjLKCJOHuREjMCD_jTh9iVJv3t1OWzmwTfIwBrBpC2-swKUrUMb-a86tUVR3zqyk5bHZiYt0Ogtr7Q3CpwT_SL2h5imI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems</title><source>Springer Nature</source><creator>Nigro, P. S. B. ; Anndif, M. ; Teixeira, Y. ; Pimenta, P. M. ; Wriggers, P.</creator><creatorcontrib>Nigro, P. S. B. ; Anndif, M. ; Teixeira, Y. ; Pimenta, P. M. ; Wriggers, P.</creatorcontrib><description>Model Order Reduction (MOR) methods are employed in many fields of Engineering in order to reduce the processing time of complex computational simulations. A usual approach to achieve this is the application of Galerkin projection to generate representative subspaces (reduced spaces). However, when strong nonlinearities in a dynamical system are present and this technique is employed several times along the simulation, it can be very inefficient. This work proposes a new adaptive strategy, which ensures low computational cost and small error to deal with this problem. This work also presents a new method to select snapshots named Proper Snapshot Selection (PSS). The objective of the PSS is to obtain a good balance between accuracy and computational cost by improving the adaptive strategy through a better snapshot selection in real time (online analysis). With this method, it is possible a substantial reduction of the subspace, keeping the quality of the model without the use of the Proper Orthogonal Decomposition (POD).</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-015-1238-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Continuum Physics ; Computational Science and Engineering ; Engineering ; Original Paper ; Theoretical and Applied Mechanics</subject><ispartof>Computational mechanics, 2016-04, Vol.57 (4), p.537-554</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-671f376d86c4cf80ab2a78847dad72ff29cd3b5d3a92916beb1f24be8ffdd4ef3</citedby><cites>FETCH-LOGICAL-c431t-671f376d86c4cf80ab2a78847dad72ff29cd3b5d3a92916beb1f24be8ffdd4ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Nigro, P. S. B.</creatorcontrib><creatorcontrib>Anndif, M.</creatorcontrib><creatorcontrib>Teixeira, Y.</creatorcontrib><creatorcontrib>Pimenta, P. M.</creatorcontrib><creatorcontrib>Wriggers, P.</creatorcontrib><title>An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>Model Order Reduction (MOR) methods are employed in many fields of Engineering in order to reduce the processing time of complex computational simulations. A usual approach to achieve this is the application of Galerkin projection to generate representative subspaces (reduced spaces). However, when strong nonlinearities in a dynamical system are present and this technique is employed several times along the simulation, it can be very inefficient. This work proposes a new adaptive strategy, which ensures low computational cost and small error to deal with this problem. This work also presents a new method to select snapshots named Proper Snapshot Selection (PSS). The objective of the PSS is to obtain a good balance between accuracy and computational cost by improving the adaptive strategy through a better snapshot selection in real time (online analysis). With this method, it is possible a substantial reduction of the subspace, keeping the quality of the model without the use of the Proper Orthogonal Decomposition (POD).</description><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Engineering</subject><subject>Original Paper</subject><subject>Theoretical and Applied Mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rwyAYgGVssK7bD9jN6w7Z1JhojqXso1AY7OMsJr52KYkGTcfy72fJLr0MD8Lr88jLg9AtJfeUEPEQCeFlmRFaZJTlMpvO0ILynGWkYvwcLQgVMhOlKC7RVYx7kkCZFwukVg5ro4ex_QbcewMd9sFAwAHMoRlb73A94SH4Ic2i00P88iOO0MH8aH3AzruudaADNpPTfdvo7mjUHfTxGl1Y3UW4-buX6PPp8WP9km1fnzfr1TZreE7HrBTU5qI0smx4YyXRNdNCSi6MNoJZy6rG5HVhcl2xipY11NQyXoO01hgONl-i-_nfne5Atc76MegmHQNpIe_Atmm-4rykjLKCJOHuREjMCD_jTh9iVJv3t1OWzmwTfIwBrBpC2-swKUrUMb-a86tUVR3zqyk5bHZiYt0Ogtr7Q3CpwT_SL2h5imI</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Nigro, P. S. B.</creator><creator>Anndif, M.</creator><creator>Teixeira, Y.</creator><creator>Pimenta, P. M.</creator><creator>Wriggers, P.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20160401</creationdate><title>An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems</title><author>Nigro, P. S. B. ; Anndif, M. ; Teixeira, Y. ; Pimenta, P. M. ; Wriggers, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-671f376d86c4cf80ab2a78847dad72ff29cd3b5d3a92916beb1f24be8ffdd4ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Engineering</topic><topic>Original Paper</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nigro, P. S. B.</creatorcontrib><creatorcontrib>Anndif, M.</creatorcontrib><creatorcontrib>Teixeira, Y.</creatorcontrib><creatorcontrib>Pimenta, P. M.</creatorcontrib><creatorcontrib>Wriggers, P.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nigro, P. S. B.</au><au>Anndif, M.</au><au>Teixeira, Y.</au><au>Pimenta, P. M.</au><au>Wriggers, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>57</volume><issue>4</issue><spage>537</spage><epage>554</epage><pages>537-554</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>Model Order Reduction (MOR) methods are employed in many fields of Engineering in order to reduce the processing time of complex computational simulations. A usual approach to achieve this is the application of Galerkin projection to generate representative subspaces (reduced spaces). However, when strong nonlinearities in a dynamical system are present and this technique is employed several times along the simulation, it can be very inefficient. This work proposes a new adaptive strategy, which ensures low computational cost and small error to deal with this problem. This work also presents a new method to select snapshots named Proper Snapshot Selection (PSS). The objective of the PSS is to obtain a good balance between accuracy and computational cost by improving the adaptive strategy through a better snapshot selection in real time (online analysis). With this method, it is possible a substantial reduction of the subspace, keeping the quality of the model without the use of the Proper Orthogonal Decomposition (POD).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-015-1238-y</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2016-04, Vol.57 (4), p.537-554 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A446121250 |
source | Springer Nature |
subjects | Classical and Continuum Physics Computational Science and Engineering Engineering Original Paper Theoretical and Applied Mechanics |
title | An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20model%20order%20reduction%20by%20proper%20snapshot%20selection%20for%20nonlinear%20dynamical%20problems&rft.jtitle=Computational%20mechanics&rft.au=Nigro,%20P.%20S.%20B.&rft.date=2016-04-01&rft.volume=57&rft.issue=4&rft.spage=537&rft.epage=554&rft.pages=537-554&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-015-1238-y&rft_dat=%3Cgale_cross%3EA446121250%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-671f376d86c4cf80ab2a78847dad72ff29cd3b5d3a92916beb1f24be8ffdd4ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A446121250&rfr_iscdi=true |