Loading…

An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems

Model Order Reduction (MOR) methods are employed in many fields of Engineering in order to reduce the processing time of complex computational simulations. A usual approach to achieve this is the application of Galerkin projection to generate representative subspaces (reduced spaces). However, when...

Full description

Saved in:
Bibliographic Details
Published in:Computational mechanics 2016-04, Vol.57 (4), p.537-554
Main Authors: Nigro, P. S. B., Anndif, M., Teixeira, Y., Pimenta, P. M., Wriggers, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c431t-671f376d86c4cf80ab2a78847dad72ff29cd3b5d3a92916beb1f24be8ffdd4ef3
cites cdi_FETCH-LOGICAL-c431t-671f376d86c4cf80ab2a78847dad72ff29cd3b5d3a92916beb1f24be8ffdd4ef3
container_end_page 554
container_issue 4
container_start_page 537
container_title Computational mechanics
container_volume 57
creator Nigro, P. S. B.
Anndif, M.
Teixeira, Y.
Pimenta, P. M.
Wriggers, P.
description Model Order Reduction (MOR) methods are employed in many fields of Engineering in order to reduce the processing time of complex computational simulations. A usual approach to achieve this is the application of Galerkin projection to generate representative subspaces (reduced spaces). However, when strong nonlinearities in a dynamical system are present and this technique is employed several times along the simulation, it can be very inefficient. This work proposes a new adaptive strategy, which ensures low computational cost and small error to deal with this problem. This work also presents a new method to select snapshots named Proper Snapshot Selection (PSS). The objective of the PSS is to obtain a good balance between accuracy and computational cost by improving the adaptive strategy through a better snapshot selection in real time (online analysis). With this method, it is possible a substantial reduction of the subspace, keeping the quality of the model without the use of the Proper Orthogonal Decomposition (POD).
doi_str_mv 10.1007/s00466-015-1238-y
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A446121250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A446121250</galeid><sourcerecordid>A446121250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-671f376d86c4cf80ab2a78847dad72ff29cd3b5d3a92916beb1f24be8ffdd4ef3</originalsourceid><addsrcrecordid>eNp9kE1rwyAYgGVssK7bD9jN6w7Z1JhojqXso1AY7OMsJr52KYkGTcfy72fJLr0MD8Lr88jLg9AtJfeUEPEQCeFlmRFaZJTlMpvO0ILynGWkYvwcLQgVMhOlKC7RVYx7kkCZFwukVg5ro4ex_QbcewMd9sFAwAHMoRlb73A94SH4Ic2i00P88iOO0MH8aH3AzruudaADNpPTfdvo7mjUHfTxGl1Y3UW4-buX6PPp8WP9km1fnzfr1TZreE7HrBTU5qI0smx4YyXRNdNCSi6MNoJZy6rG5HVhcl2xipY11NQyXoO01hgONl-i-_nfne5Atc76MegmHQNpIe_Atmm-4rykjLKCJOHuREjMCD_jTh9iVJv3t1OWzmwTfIwBrBpC2-swKUrUMb-a86tUVR3zqyk5bHZiYt0Ogtr7Q3CpwT_SL2h5imI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems</title><source>Springer Nature</source><creator>Nigro, P. S. B. ; Anndif, M. ; Teixeira, Y. ; Pimenta, P. M. ; Wriggers, P.</creator><creatorcontrib>Nigro, P. S. B. ; Anndif, M. ; Teixeira, Y. ; Pimenta, P. M. ; Wriggers, P.</creatorcontrib><description>Model Order Reduction (MOR) methods are employed in many fields of Engineering in order to reduce the processing time of complex computational simulations. A usual approach to achieve this is the application of Galerkin projection to generate representative subspaces (reduced spaces). However, when strong nonlinearities in a dynamical system are present and this technique is employed several times along the simulation, it can be very inefficient. This work proposes a new adaptive strategy, which ensures low computational cost and small error to deal with this problem. This work also presents a new method to select snapshots named Proper Snapshot Selection (PSS). The objective of the PSS is to obtain a good balance between accuracy and computational cost by improving the adaptive strategy through a better snapshot selection in real time (online analysis). With this method, it is possible a substantial reduction of the subspace, keeping the quality of the model without the use of the Proper Orthogonal Decomposition (POD).</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-015-1238-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Continuum Physics ; Computational Science and Engineering ; Engineering ; Original Paper ; Theoretical and Applied Mechanics</subject><ispartof>Computational mechanics, 2016-04, Vol.57 (4), p.537-554</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-671f376d86c4cf80ab2a78847dad72ff29cd3b5d3a92916beb1f24be8ffdd4ef3</citedby><cites>FETCH-LOGICAL-c431t-671f376d86c4cf80ab2a78847dad72ff29cd3b5d3a92916beb1f24be8ffdd4ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Nigro, P. S. B.</creatorcontrib><creatorcontrib>Anndif, M.</creatorcontrib><creatorcontrib>Teixeira, Y.</creatorcontrib><creatorcontrib>Pimenta, P. M.</creatorcontrib><creatorcontrib>Wriggers, P.</creatorcontrib><title>An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>Model Order Reduction (MOR) methods are employed in many fields of Engineering in order to reduce the processing time of complex computational simulations. A usual approach to achieve this is the application of Galerkin projection to generate representative subspaces (reduced spaces). However, when strong nonlinearities in a dynamical system are present and this technique is employed several times along the simulation, it can be very inefficient. This work proposes a new adaptive strategy, which ensures low computational cost and small error to deal with this problem. This work also presents a new method to select snapshots named Proper Snapshot Selection (PSS). The objective of the PSS is to obtain a good balance between accuracy and computational cost by improving the adaptive strategy through a better snapshot selection in real time (online analysis). With this method, it is possible a substantial reduction of the subspace, keeping the quality of the model without the use of the Proper Orthogonal Decomposition (POD).</description><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Engineering</subject><subject>Original Paper</subject><subject>Theoretical and Applied Mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rwyAYgGVssK7bD9jN6w7Z1JhojqXso1AY7OMsJr52KYkGTcfy72fJLr0MD8Lr88jLg9AtJfeUEPEQCeFlmRFaZJTlMpvO0ILynGWkYvwcLQgVMhOlKC7RVYx7kkCZFwukVg5ro4ex_QbcewMd9sFAwAHMoRlb73A94SH4Ic2i00P88iOO0MH8aH3AzruudaADNpPTfdvo7mjUHfTxGl1Y3UW4-buX6PPp8WP9km1fnzfr1TZreE7HrBTU5qI0smx4YyXRNdNCSi6MNoJZy6rG5HVhcl2xipY11NQyXoO01hgONl-i-_nfne5Atc76MegmHQNpIe_Atmm-4rykjLKCJOHuREjMCD_jTh9iVJv3t1OWzmwTfIwBrBpC2-swKUrUMb-a86tUVR3zqyk5bHZiYt0Ogtr7Q3CpwT_SL2h5imI</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Nigro, P. S. B.</creator><creator>Anndif, M.</creator><creator>Teixeira, Y.</creator><creator>Pimenta, P. M.</creator><creator>Wriggers, P.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20160401</creationdate><title>An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems</title><author>Nigro, P. S. B. ; Anndif, M. ; Teixeira, Y. ; Pimenta, P. M. ; Wriggers, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-671f376d86c4cf80ab2a78847dad72ff29cd3b5d3a92916beb1f24be8ffdd4ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Engineering</topic><topic>Original Paper</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nigro, P. S. B.</creatorcontrib><creatorcontrib>Anndif, M.</creatorcontrib><creatorcontrib>Teixeira, Y.</creatorcontrib><creatorcontrib>Pimenta, P. M.</creatorcontrib><creatorcontrib>Wriggers, P.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nigro, P. S. B.</au><au>Anndif, M.</au><au>Teixeira, Y.</au><au>Pimenta, P. M.</au><au>Wriggers, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>57</volume><issue>4</issue><spage>537</spage><epage>554</epage><pages>537-554</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>Model Order Reduction (MOR) methods are employed in many fields of Engineering in order to reduce the processing time of complex computational simulations. A usual approach to achieve this is the application of Galerkin projection to generate representative subspaces (reduced spaces). However, when strong nonlinearities in a dynamical system are present and this technique is employed several times along the simulation, it can be very inefficient. This work proposes a new adaptive strategy, which ensures low computational cost and small error to deal with this problem. This work also presents a new method to select snapshots named Proper Snapshot Selection (PSS). The objective of the PSS is to obtain a good balance between accuracy and computational cost by improving the adaptive strategy through a better snapshot selection in real time (online analysis). With this method, it is possible a substantial reduction of the subspace, keeping the quality of the model without the use of the Proper Orthogonal Decomposition (POD).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-015-1238-y</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2016-04, Vol.57 (4), p.537-554
issn 0178-7675
1432-0924
language eng
recordid cdi_gale_infotracacademiconefile_A446121250
source Springer Nature
subjects Classical and Continuum Physics
Computational Science and Engineering
Engineering
Original Paper
Theoretical and Applied Mechanics
title An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20model%20order%20reduction%20by%20proper%20snapshot%20selection%20for%20nonlinear%20dynamical%20problems&rft.jtitle=Computational%20mechanics&rft.au=Nigro,%20P.%20S.%20B.&rft.date=2016-04-01&rft.volume=57&rft.issue=4&rft.spage=537&rft.epage=554&rft.pages=537-554&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-015-1238-y&rft_dat=%3Cgale_cross%3EA446121250%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-671f376d86c4cf80ab2a78847dad72ff29cd3b5d3a92916beb1f24be8ffdd4ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A446121250&rfr_iscdi=true